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Abstract

This paper experimentally investigates settings where agents allo-
cate limited resources to compete for divisible complementary factors.
When the success function is highly responsive to resource allocations,
competitors have stronger incentives to best respond, but adaptive
models predict slower convergence to equilibrium due to nonequilib-
rium incentives. In contrast, the unique Nash equilibrium allocations
are shown to be proportional to prize values and do not depend on the
responsiveness of the success function. To test these predictions, the
experimental design varies both the prize values and the responsive-
ness of the success function independently across treatment conditions.
Consistent with adaptive predictions, less responsive success functions
produced faster convergence to equilibrium, suggesting that nonequi-
librium incentives can influence the rate of convergence.
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1 Introduction

To predict the impact of hypothetical policy interventions, economists often
consider how they would affect equilibrium predictions. Yet the transition
from a pre-intervention equilibrium to a post-intervention equilibrium may
be gradual if economic agents are boundedly rational. This notion of gradual
convergence to Nash equilibrium goes back as least as far as Nash’s (1950)
mass action1 interpretation of equilibrium describing agents who lack “the
ability and inclination to go though any complex reasoning process,” but
instead “accumulate empirical information on the relative advantages of the
various pure strategies at their disposal.” Adaptive models formalize this
notion by explicitly describing how boundedly rational agents adjust their
behavior over time.

This paper experimentally tests adaptive predictions about the rate of con-
vergence to equilibrium in settings where agents allocate limited resources to
compete for divisible complementary factors. Understanding the rate of con-
vergence is an important part of evaluating of potential policy interventions
since we are all dead in the long run, as noted by Keynes (1923). In empirical
settings, strategic interaction frequently involves competition over divisible
complementary factors. Ride sharing platforms compete for both riders and
drivers. The value of an additional rider may depend on a firm’s success in
attracting divers (Rochet and Tirole, 2003). Similarly, military conflicts of-
ten involve competition for control over both airspace and the ground below
it. The value of additional control over airspace may depend on the faction’s
level of control over the ground below it (Pirnie et al., 2005).

Success functions describes how prizes are divided among competitors as a
function of resource allocations. When the success function is highly respon-
sive to resource allocations, competitors have a stronger incentive to best
respond, but adaptive models predict slower convergence to equilibrium due
to nonequilibrium incentives. In contrast, the unique Nash equilibrium allo-
cations are shown to be proportional to the prize values and do not depend
on the responsiveness of the success function. To test these predictions, the

1See Young (2011) for more on Nash’s mass action interpretation of equilibrium.
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experimental design varies both the prize values and the responsiveness of
the success function independently across treatment conditions.

Consistent with adaptive predictions, convergence to equilibrium was faster
when success functions were less sensitive to resource allocations. Consistent
with equilibrium predictions, subjects allocated more resources to compete
for more valuable prizes. These results suggest that both equilibrium incen-
tives and nonequilibrium incentives can affect strategic behavior in empirical
settings. While equilibrium may provide a useful approximation of long run
behavior, nonequilibrium incentives can influence the rate of convergence.

This paper contributes to the experimental literature on Blotto type contests
where agents allocate limited resourced over multiple battlefields. Much of
the previous literature focuses on winner-take-all battles, where a single agent
receives the entirety of the prize in a given battlefield. Duffy and Matros
(2017) find support for equilibrium predictions regarding differences in allo-
cation behavior under majoritarian objective functions and linear objective
functions in stochastic Blotto contests with winner-take-all battles. Chowd-
hury et al. (2021) find that subjects over-allocate resources to battlefields
with distinctive labels in stochastic Blotto contests with winner-take-all bat-
tles. In contrast, the present paper investigates the relationship between
success function responsiveness and the rate of convergence to equilibrium in
Blotto contests with battles for shares of divisible complementary prizes.

This paper also contributes to a growing literature investigating the process
of convergence to equilibrium. Cason et al. (2014) observe better convergence
to equilibrium in evolutionarily stable games than in evolutionarily unstable
games. In contrast, the games investigated by the present study are evolu-
tionarily stable in all treatments, so evolutionary stability does not explain
the observed treatment effects. Chen and Gazzale (2004) observe better con-
vergence to equilibrium in supermodular compensation mechanisms than in
non-supermodular compensation mechanisms. In contrast, the games investi-
gated by the present study are supermodular in all treatments, so supermod-
ularity does not explain the observed treatment effects. Stephenson (2022)
observes better convergence in school choice mechanisms with high frequency
feedback than in school choice mechanisms with low frequency feedback. In
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contrast, the present study provides feedback at the same frequency in all
treatments, so feedback frequency does not explain the treatment effects
identified by the present study.

The remainder of this paper is organized as follows. Section 2 presents the
theory. Section 3 describes the experimental design. Section 4 states the
hypotheses. Section 5 discusses the results and section 6 concludes.

2 Theory

Consider a resource allocation game where two agents simultaneously allo-
cate competitive resources between two contests. Let xik ∈ R+ denote the
quantity of competitive resources allocated by agent i to contest k. As in
the Blotto contest of Borel (1921), total resource investments are sunk before
agents allocate them between contests. Let wi ∈ R+ denote the quantity of
resources allocated between contests by agent i. Let Xi denote the set of
allocations xi ∈ R2

+ such that xi1 + xi2 = wi. Each contest has a divisible
prize. Let vk ∈ [0, 1] denote the relative value of contest k’s prize such that
v1+v2 = 1. The success function yik (x) describes agent i’s share of prize k as
a function of the allocation profile x ∈ R2×2

+ . If x1k = x2k = 0, then prize k is
evenly divided between the agents. If x1k+x2k > 0 then the success function
takes the generalized Tullock (1980) form under which agent i’s share of prize
k is proportional to a power function of their allocation to contest k.

yik (x) =
xα
ik

xα
ik + xα

jk

(1)

The parameter α indexes the responsiveness of the success function yik (x) to
the allocation levels xik and xjk. If α is very large then nearly the entirety of
prize k is awarded to the agent who allocates the most resources to contest k.
If α is very small then prize shares are largely insensitive to allocations. Let
πi (x) denote agent i’s objective function. Prize shares are complementary
inputs to the objective function. If yik (x) = 0 then πi (x) = 0. If yi (x) ∈ R2

++
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then agent i’s payoff is given by

πi (x) = β
(
v1yi1 (x)

−c + v2yi2 (x)
−c)− 1

c (2)

The parameter c > 0 indexes the level of complementarity. In the limit
as c becomes large, prizes are perfect complements. Strategic interaction
frequently involves competition over divisible complementary factors. For
example, ride sharing platforms compete for both riders and drivers. The
value of an additional rider may depend on a firm’s success in attracting
divers (Rochet and Tirole, 2003). Similarly, military conflicts can involve
competition for control over both airspace and the ground below it. The
value of additional control over the airspace in a given region may depend
on a military faction’s level of control over the ground below it (Pirnie et al.,
2005).

This is not a zero sum game because the total payoff π1 (x) + π2 (x) varies
with the strategy profile x. Consider the simple case where v1 = v2 =

1
2

and
α = c = 1. If both agents select identical resource allocations then x1 = x2

and π1 (x) = π1 (x) =
1
2
β, so the total payoff is given by π1 (x) + π2 (x) = β.

In contrast if x1 =
(
1
4
, 3
4

)
and x2 =

(
3
4
, 1
4

)
then π1 (x) = π2 (x) =

3
8
β, so the

total payoff is given by π1 (x) + π2 (x) =
3
4
β.

Theorem 1 says that each agent’s equilibrium allocation to contest k is pro-
portional to the value of prize k under unit complementarity. A proof of
this theorem provided in the appendix. The general case with n players, m
contests, and arbitrary complementarity is considered by Stephenson (2023).

Theorem 1. If c = 1 then the unique Nash equilibrium satisfies xik = wivk.

Figure 1 illustrates the equilibrium payoff function for the resource alloca-
tion game with c = 1, β = 28, and wi = 100. Subfigure 1a illustrates the
equilibrium payoff function when the value of prize 1 is given by v1 = 0.2.
Subfigure 2b illustrates the equilibrium payoff function when the value of
prize 1 is given by v1 = 0.8. The horizontal axis indicates agent i’s invest-
ment to contest 1 and the vertical axis indicates agent i’s payoff. The dashed
line illustrates agent i’s payoff function when α = 1. The solid line illustrates
agent i’s payoff function when α = 8. The dotted line indicates agent j’s
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Figure 1: Equilibrium payoff functions for c = 1, β = 28, and wi = 100

allocation to contest 1. The thick transparent line indicates agent i’s equilib-
rium allocation to contest 1. The equilibrium payoff is equal to 0.5 in both
cases, but payoffs are more sensitive to allocations when α = 8.

A Nash equilibrium is said to be evolutionarily stable if small deviations
from equilibrium always give the equilibrium strategy a higher payoff than
than the deviating strategy (Taylor and Jonker, 1978). More formally, a
symmetric Nash equilibrium (σ∗, σ∗) is said to be evolutionarily stable if,
for any nonequilibrium mixed strategy σ ̸= σ∗ and any sufficiently small
ε > 0, π1 (σ, σ̄) < π1 (σ

∗, σ̄) where σ̄ = εσ + (1− ε)σ∗ denotes a strategy
that involves utilizing the the nonequilibrium strategy σ with probability ε

and utilizing the equilibrium strategy σ∗ with probability 1− ε. Intuitively,
such equilibria are stable because small deviations from equilibrium never
incentivize equilibrium players to adopt the deviating strategy. As shown in
the proof of theorem 1, the objective function πi is strictly quasiconcave in
xi, so the Nash equilibrium x∗ is always strict and the equilibrium strategy
is always evolutionarily stable.

A symmetric two player game with a one dimensional strategy space is said
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Figure 2: Best response functions for c = 1 and wi = 100

to be supermodular if the marginal payoff to one player from increasing their
strategy is increasing in the other player’s strategy. The resource allocation
game described above is symmetric and the strategy space is given by the one
dimensional unit simplex △1. If c = 1 then differentiating player i’s marginal
benefit from allocation to contest 1 with respect to agent j’s allocation to
contest 1 yields

∂2πi

∂xi1∂xj1

= αβπi (x)
2

[
v1
x2
i1

+
v2
x2
i2

]
(3)

This expression is strictly positive for all xi ∈ R2
++, so player i’s marginal

benefit from allocating resources to prize 1 is increasing in agent j’s allocation
to prize 1. Hence the resource allocation game with c = 1 is supermodular
for all α > 0.

Figure 2 illustrates the best response correspondence. The horizontal axis
indicates agent j’s allocation to contest 1 and the vertical axis indicates
agent i’s payoff maximizing allocation to contest 1. Subfigure 2a illustrates
agent i’s best response function when the value of prize 1 is given by v1 =
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Figure 3: Nonequilibrium payoff functions for c = 1, β = 28, and wi = 100

0.2. Subfigure 2b illustrates agent i’s best response function when the value
of prize 1 is given by v1 = 0.8. The dashed line illustrates agent i’s best
response when α = 1. The solid line indicates agent i’s best response when
α = 0.8. The dotted line indicates the equilibrium allocation to prize 1. Out
of equilibrium, agent i’s best response is always closer to equilibrium when
α = 1 than α = 8.

Figure 3 illustrates nonequilibrium payoff functions in resource allocation
games with unit endowments. Subfigure 3a illustrates agent i’s payoff func-
tion when the value of prize 1 is given by v1 = 0.2 and agent j’s allocation
to contest 1 is given by xj1 = 0.7. Subfigure 3b illustrates agent i’s payoff
function when the value of prize 1 is given by v1 = 0.8 and agent j’s alloca-
tion to contest 1 is given by xj1 = 0.3. The horizontal axis indicates agent
i’s investment in prize 1 and the vertical axis indicates agent i’s payoff. The
dashed line illustrates agent i’s payoff function when α = 1. The solid line
illustrates agent i’s payoff function when α = 8. The dotted vertical line
indicates the agent j’s allocation to contest 1. The thick transparent ver-
tical line indicates the equilibrium allocation to contest 1. Agent i’s payoff
maximizing allocation is closer to equilibrium when α = 1 than α = 8.
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2.1 Quantal Response Equilibrium

Quantal response equilibrium describes boundedly rational agents who are
more likely to select strategies that yield higher payoffs (McKelvey and Pal-
frey, 1995). In contrast, Nash equilibrium describes agents who always best
respond. Let π̄i (xi|σj) denote agent i’s expected payoff from the pure strat-
egy xi given agent j’s mixed strategy σj.

π̄i (xi|σj) =

∫
πi (xi, xj)σj (xj) dxj (4)

Agents i’s logit quantal response to the mixed strategy σj is given by the
probability density function ℓi (xi|σj).

ℓi (xi|σj) =
expλπ̄i (xi|σj)∫
expλπ̄i (yi|σj) dyi

(5)

The logit parameter λ describes the sensitivity of the logit quantal response
to payoff differences. In the limit as λ → ∞, the logit quantal response
converges to the best response. In the limit as λ → 0, the logit quantal
response converges to uniformly random strategy selection. A logit quantal
response equilibrium is a fixed point σ∗ of the logit quantal response such
that σ∗

i (xi) = ℓi
(
xi|σ∗

j

)
. As shown in figure 1, the responsiveness parameter

α affect the shape of the payoff function without affecting the equilibrium
best response, so changes in α produce changes in the logit quantal response
equilibrium without changing the Nash equilibrium predictions.

Figure 4 illustrates logit quantal response equilibria of the resource allocation
game with c = 1, β = 28, wi = 100, and v1 = 0.8. The horizontal axis of each
graph depicts the allocation to contest 1 and the vertical axis depicts the logit
quantal response equilibrium density. The thick transparent line indicates
the Nash equilibrium allocation to contest 1. The dotted line indicates the
average logit quantal response equilibrium allocation to contest 1. The shape
of the logit quantal response equilibrium distribution depends on both α and
λ. Higher values of α make payoffs more sensitive to allocations and higher
values of λ make allocations more sensitive to payoffs.
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Figure 4: Logit quantal response equilibria for c = 1, β = 28, wi = 100, and
v1 = 0.8
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2.2 Adaptive Models

The existence of a unique Nash equilibrium implies that any finite repetition
of the resource allocation game has a unique subgame perfect Nash equi-
librium repeating the stage game equilibrium in every period. In contrast,
Nash’s “mass action” interpretation of equilibrium considers boundedly ratio-
nal agents who “accumulate empirical information on the relative advantages
of the various pure strategies at their disposal” (Nash, 1950). In this case, “it
is unnecessary to assume that participants have full knowledge of the total
structure of the game, or the ability and inclination to go though any com-
plex reasoning process” (Nash, 1950). If agents exhibit this kind of bounded
rationality, Nash equilibrium may provide a more accurate description of long
run behavior than short run behavior.

Adaptive models formalize this intuition by explicitly describing how agents
change their behavior over time. The logit dynamic describes agents who
quantal respond to the action taken by their opponent in the previous period
(Fudenberg and Levine, 1998). Let σL

it (xi) denote the probability density for
agent i’s allocation xi (t) in stage t > 1 under the logit dynamic.

σL
it (xi) =

expλπi (xi, xj (t− 1))∫
expλπi (yi, xj (t− 1)) dyi

(6)

The noisy best response dynamic describes agents who are sensitive to both
the magnitude of payoff differences and the location of the best response. Let
σN
it (xi) denote the probability density for agent i’s allocation xi (t) in stage

t > 1 under the noisy best response dynamic.

σN
it (xi) =

expuit (xi, xj (t− 1))∫
expuit (yi, xj (t− 1)) dyi

(7)

uit (xi, xj) = λπi (xi, xj)− η |xi − x∗
i (xj)| − γ |xi − xi (t− 1)| (8)

x∗
i (xj) = argmax

xi∈Xi

πi (xi, xj) (9)

The parameter λ describes agent i’s sensitivity to the magnitude of payoff
differences. The parameter η describes agent i’s sensitivity to the location
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Figure 5: Average path predictions for the noisy best response dynamic.
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of the best response. The parameter γ describes the strength of behavioral
inertia. Behavioral inertia is the tendency for agents to continue doing what
they did in the past (Norman, 2009; Liu and Riyanto, 2017). In the limit
as λ → 0, η → 0, and γ → 0, agent i’s allocation is uniformly distributed.
In the limit as λ → ∞ or η → ∞, agent i’s allocation coincides with the
best response. In the limit as γ → ∞, agent i permanently maintains their
original allocation.

Figure 5 illustrates the predictions of of the noisy best response dynamic.
The horizontal axis of each graph indicates the period. The vertical axis of
each graph illustrates the average allocation to contest 1. The solid lines
indicate the predictions for v1 = 0.8 and α = 1. The dashed lines illustrates
the predictions for v1 = 0.8 and α = 8. The dot-dashed lines indicate
the predictions for v1 = 0.2 and α = 8. The dotted lines illustrates the
predictions for v1 = 0.2 and α = 1.

3 Experimental Design

The experiment has a 2× 2 factorial design with a total of 4 treatment con-
ditions as illustrated by table 1. In the low responsiveness treatment, the
responsiveness of the success function was given by α = 1. In the high re-
sponsiveness treatment, the responsiveness of the success function was given
by α = 8. Section 2 provides a detailed discussion of the responsiveness
parameter α. In the first valuation treatment, prize values were given by
v = (0.8, 0.2), so the unique Nash equilibrium predicts that agents will allo-
cate 80% of their resources to contest 1. In the second valuation treatment,
prize values were given by v = (0.2, 0.8), so the unique Nash equilibrium
predicts that agents will allocate 20% of their resources to contest 1.

Each experimental session implemented one of the four treatment conditions.
A total of 8 experimental sessions were conducted, 2 for each of the 4 treat-
ment conditions. Each session had 20 subjects for a total of 160 experimental
subjects. At the beginning of each session, subjects were randomly matched
into pairs which remained fixed for the entire session. Each experimental
session consisted of 100 periods. The first period lasted for 1 minute. Each
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Low Responsiveness High Responsiveness

First Valuation α = 1, v1 = 0.8 α = 8, v1 = 0.8

Second Valuation α = 1, v1 = 0.2 α = 8, v1 = 0.2

Table 1: Experimental Design

of the subsequent periods lasted for 5 seconds.

Each period implemented the resource allocation game described in section
2. During a period, each subject allocated 100 tokens between two contests.
At the end of the period, the payoff to each subject depended on both how
they allocated their resources and how their opponent allocated resources.
Consistent with Benndorf et al. (2016), Leng et al. (2018), and Cason et al.
(2021), subjects were shown the allocation selected by each group member,
the payoff earned by each group member, and the payoffs they could have
earned by selecting other allocations at the end of each period.

Figure 6 depicts the experimental interface. In the central graph, the horizon-
tal axis indicates the number of tokens invested in contest 1 and the vertical
axis indicates the subject’s payoff. The black line indicates the number of
tokens the subject chose to invest in contest 1 during the previous period.
The green line illustrates the payoffs the subject could have earned in the
previous period if they had selected other allocations. The blue line indicates
the number of tokens the subject has currently selected to invest in contest
1 during the current period. Numerical information about allocations and
payoffs are shown below the graph. In each period, payoffs were determined
by the objective function given by equation (2) multiplied by 28. At the end
of a session, subjects received their average payoff over all 100 periods plus a
$7 participation bonus. Average earnings in the experiment were $19.92 per
subject.
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Figure 6: Experimental Interface

4 Hypotheses

The unique Nash equilibrium of the game described in section 2 has players
allocating resources to each contest in proportion to the value of it’s prize.
In the first valuation treatment, Nash equilibrium predicts that subjects will
invest 80% of their resources in contest 1. In the second valuation treatment,
it predicts that subjects will invest 20% of their resources in contest 1.

Hypothesis 1. More resources will be allocated to contest 1 in the first
valuation treatment than the second valuation treatment.

In equilibrium, agents have a stronger incentive to best respond when the
contest success function is more responsive to investment levels, but adaptive
models often predict faster convergence to equilibrium under less responsive
success functions. As discussed in section 2.2, nonequilibrium best responses
are consistently farther from equilibrium under more responsive success func-
tions.

Hypothesis 2. Resource allocations will approach equilibrium more quickly
in the low responsiveness treatment than the high responsiveness treatment.
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Figure 7: Average allocations by period

5 Results

Figure 7 illustrates average allocations by period under each of the four treat-
ment conditions. The vertical axis indicates the average allocation to contest
1. The horizontal axis indicates the period. In the first valuation treatment,
the unique Nash equilibrium predicts that agents will allocate 80% of their
resources to contest 1. In the second valuation treatment, the unique Nash
equilibrium predicts that agents will allocate 20% of their resources to contest
1. Each subject allocated a total of 100 units between the two contests. The
average allocation to contest 1 under the first valuation treatment was 74.72
while the average allocation to contest 1 in the second valuation treatment
was 27.9.

Consistent with hypothesis 1, subjects allocated significantly more resources
to contest 1 in the first valuation treatment than the second valuation treat-
ment. Both a t-test and a non-parametric Wilcoxon rank-sum test find this
difference to be statistically significant at the 1% level, as reported in table
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2. The average allocation selected by a fixed matching pair over an entire
experimental session was treated as a single observation. A total of 8 ses-
sions were conducted. There were 4 sessions per valuation treatment and 10
fixed matching pairs per session, yielding a total of 40 observations with 20
observations per valuation treatment.

Result 1. Significantly more resources were allocated to contest 1 in the first
valuation treatment than the second valuation treatment.

Figure 8 illustrates the average deviation from equilibrium by period in each
of the two responsiveness treatments. Deviation from equilibrium is mea-
sured as the absolute difference between the observed allocation to contest 1
and the equilibrium allocation to contest 1. The vertical axis indicates the
average deviation from equilibrium. The horizontal axis indicates the period.
In the high responsiveness treatment, the responsiveness of the contest suc-
cess function was given by α = 8. In the low responsiveness treatment, the
responsiveness of the contest success function was given by α = 1. Dotted
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p-value
Responsiveness (α) 1 8 rank-sum t-test

Deviation from Equilibrium 5.73 11.21 < 0.0001 < 0.0001

Equilibrium Allocation 1 20 80 rank-sum t-test
Average Allocation 1 27.9 74.72 < 0.0001 < 0.0001

Table 2: Pair Level Hypothesis Tests

lines illustrate standard errors for the average deviation from equilibrium
under each responsiveness treatment in each period.

Consistent with hypothesis 2, resource allocations were significantly closer
to equilibrium predictions in the low responsiveness treatment than the high
responsiveness treatment. The average deviation from equilibrium in the low
responsiveness treatment was 5.73 while the average deviation from equilib-
rium in the high responsiveness treatment was 11.21. Both a t-test and a
non-parametric Wilcoxon rank-sum test find this difference to be statistically
significant at the 1% level, as reported in table 2. We treat the average allo-
cation selected by a fixed matching pair over an entire experimental session as
a single observation, yielding a total of 40 observations with 20 observations
per responsiveness treatment.

Result 2. Resource allocations were significantly closer to equilibrium pre-
dictions in the low responsiveness treatment than the high responsiveness
treatment.

Adaptive models predict faster convergence to equilibrium in the low respon-
siveness treatment than the high responsiveness treatment, as discussed in
section 2.2. These models describe a gradual process of behavioral change as
agents accumulate experience, but they make no predictions about the initial
resource allocations selected by subjects during the first period. In contrast,
cognitive hierarchy and level-k models can characterize the initial behavior
of boundedly rational agents who exhibit a limited depth of introspective
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reasoning (Nagel, 1995; Camerer et al., 2004). Accordingly, cognitive hier-
archy models can predict initial behavior that is closer to equilibrium under
less responsive contest success functions. No significant differences are found
in initial behavior across treatment conditions, suggesting that the observed
treatments effects are driven by differences in the way behavior changes over
time, rather than differences in the distribution of initial behavior.

Figures 9 and 10 illustrate p-values for hypothesis tests using data from only
a single period. Figure 9 illustrates tests for differences in allocation lev-
els across valuation treatments and figure 10 illustrates tests for differences
in distance from equilibrium across responsiveness treatments. In both fig-
ures, the dashed line indicates the conventional 5% significance level. In the
first period, there is no significant difference in resource allocations or devi-
ations from equilibrium, suggesting that the observed treatment effects are
not driven by introspective reasoning prior to initial play. In all subsequent
periods, both tests find significantly higher allocations to contest 1 in the first
valuation treatment. In periods 2-40, both tests consistently find allocations
to be significantly farther from equilibrium in the high responsiveness treat-
ment. In periods 80-100, neither test consistently finds significant differences
in deviation from equilibrium across responsiveness treatments. Neither ini-
tial behavior in the first period nor long run behavior in the last few periods
is significantly different across responsiveness treatments, suggesting that re-
sult 2 is driven by differences in the rate of convergence during intermediate
periods.

Parameters for the adaptive model described in section 2.2 are estimated at
the subject level by maximum likelihood. Table 3 provides treatment level
averages and hypothesis tests. Hypothesis tests treat each fixed matching
group as a single observation for a total of 80 observations with 8 sessions
and 10 fixed matching groups per session. Table 3a provides the average
value of each parameter estimate over all experimental subjects. Standard
errors are provided in parentheses. Signed-ranks tests find that subjects
exhibited significant sensitivity to payoff differences, significant sensitivity to
the location of the best response, and significant behavioral inertia at the 1%
level. Table 3b provides average parameter values by treatment. Rank-sum
tests find no significant effect from responsiveness of the success function
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Signed-Rank Test

Parameter Estimate p-value

Payoff Sensitivity (λ) 4.201 (1.451) 0.009

Best Response Sensitivity (η) 0.770 (0.130) <0.001

Behavioral Inertia (γ) 0.949 (0.157) <0.001

(a) Average Parameter Estimates

Responsiveness Rank-Sum Test

Parameter α = 1 α = 8 p-value

Payoff Sensitivity (λ) 8.185 (2.771) 0.217 (0.194) 0.121

Best Response Sensitivity (η) 0.536 (0.119) 1.005 (0.228) 0.72

Behavioral Inertia (γ) 1.023 (0.223) 0.875 (0.223) 0.034

(b) Parameter Estimates by Treatment

α = 1 α = 8

λ η γ λ η γ

Payoff Sensitivity (λ) 1.00 0.59 0.87 1.00 -0.12 0.29

Best Response Sensitivity (η) 0.59 1.00 0.84 -0.12 1.00 0.86

Behavioral Inertia (γ) 0.87 0.84 1.00 0.29 0.86 1.00

(c) Correlation Between Parameter Estimates

Table 3: Parameter Estimates at the Subject Level
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on the level of payoff sensitivity or the level of sensitivity to the location of
the best response. In contrast, a rank-sum test finds that subjects exhibited
significantly higher levels of behavioral inertia when α = 1 than when α = 8

at the 5% level. Stronger behavioral inertia may have resulted from the
relatively weaker incentives to best respond under less responsive success
functions, as illustrated in Figure 3.

Table 3c provides correlations between subject level parameter estimates.
Payoff sensitivity, best response sensitivity, and behavioral inertia were all
positively correlated in the low responsiveness treatment where α = 1. Posi-
tive correlation between sensitivity levels and behavioral inertia may indicate
that subjects face a tradeoff between speed and precision of their allocation
adjustments. Subjects who make careful adjustments might tend to make
large adjustments less frequently. Payoff sensitivity and best response sensi-
tivity were negatively correlated in the high responsiveness treatment where
α = 8, suggesting that subjects with limited attention may face a tradeoff
between paying attention to the location of the best response and paying
attention to the magnitude of payoff differences in settings where outcomes
are highly sensitive to actions.

6 Conclusions

To predict the impact of a hypothetical potential policy intervention, economists
often consider how it would affect equilibrium predictions. Yet the transition
from a pre-intervention equilibrium to a post-intervention equilibrium may be
gradual if economic agents are boundedly rational, consistent with the mass
action interpretation of equilibrium described by Nash (1950). Adaptive
models formalize this idea by explicitly describing how boundedly rational
agents adjust their behavior over time.

This study experimentally tests both equilibrium predictions and adaptive
predictions in settings where agents allocate limited resources between con-
tests with divisible complementary prizes. The unique Nash equilibrium
resource allocations are shown to be proportional to prize values and do not
depend on the responsiveness of the success function. In contrast, adap-
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tive models predict slower convergence to equilibrium under more responsive
success functions due to nonequilibrium incentives.

To test these predictions, the experimental design varies both the prize values
and the responsiveness of the success function independently across treatment
conditions. Consistent with equilibrium predictions, subjects allocated more
resources to compete for more valuable prizes. Consistent with adaptive
model predictions, convergence to equilibrium was faster when success func-
tions were less responsive to resource allocations. These results suggest that
both equilibrium incentives and nonequilibrium incentives contain important
information for policy makers. While equilibrium may provide a useful tool
for characterizing long run behavior, nonequilibrium incentives can affect the
rate of convergence.

The present study investigates one particular class of strategic environments,
but additional research is needed to better understand the factors that de-
termine the rate of convergence in a wider variety of settings before strong
conclusions can be drawn about the generality of the present results. The
experimental design of the present study varies both the prize values and the
responsiveness of the success function, but it does not vary the number of
competitors, the number of prizes, or the elasticity of substitution between
prizes. Future research should investigate how these other factors effect the
rate of convergence. The present study also finds that the responsiveness
of the success function had a significant effect on the strength of behavioral
inertia. Additional research is needed to better understand the underlying
factors determining the strength of behavioral inertia in strategic settings.

A Proofs

Proof of Theorem 1. Suppose agent i allocates zero resources to contest k

such that xik = 0. Let x̂i such that x̂ik = ε ∈ (0, 1) and x̂ib = 1 − ε. If
xik = 0 and xjk ̸= 0 then πi (x) = 0 < πi (x̂i, xj). If xik = xjk = 0 then
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taking the limit as ε → 0 obtains.

lim
ε→0

πi (x̂i, xj) =
β

vk + 2vb
>

β

2
= πi (x) (10)

Hence xik > 0 in every Nash equilibrium. Let gi (x) = − β
πi(x)

so differentiat-
ing gi with respect to xik yields

∂gi
∂xik

=
αvk [1− yik (x)]

yik (x)xik

(11)

Since yik (x) is increasing in xik, the numerator of (11) is decreasing in xik

and the denominator is increasing in xik so ∂g2i
∂x2

ik
< 0. If b ̸= k then (11) is

constant in xib so ∂g2i
∂x2

ib
= 0. Hence gi is strictly concave in xi and πi is strictly

quasiconcave in xi. The first order conditions on xi for the maximization of
πi state that ∂πi

∂xik
= ∂πi

∂xib
so we have

vk [1− yik (x)]

yik (x)xik

=
vb [1− yib (x)]

yib (x)xib

(12)

vkyjk (x)

yik (x)xik

=
vbyjb (x)

yib (x)xib

(13)

vkyjk (x) yib (x)

vbyjb (x) yik (x)
=

xik

xib

(14)

Since πi is strictly quasiconcave in xi and xik > 0 in every equilibrium, the
first order conditions are necessary and sufficient for equilibrium so

xik

xib

=
xjk

xjb

(15)

xik

xjk

=
xib

xjb

(16)

xα
ik

xα
ik + xα

jk

=
xα
ib

xα
ib + xα

jb

(17)

yik (x) = yib (x) (18)

Hence there exists ȳi (x) = yik (x) = yib (x). Substituting this into equation
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(14) yields

vkȳj (x) ȳi (x)

vbȳj (x) ȳi (x)
=

xik

xib

(19)

vk
vb

=
xik

xib

(20)

Now since xi1 + xi2 = wi we have xik = wivk.
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