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Abstract

This paper investigates multi-battle contests where a finite number
agents allocate competitive resources to compete over a finite number
of divisible prizes. The share of each prize awarded to each agent
is determined by an arbitrarily decisive battlefield outcome function.
Prizes serve as complementary factors with constant elasticity. Such
multi-battle contests are shown to possess a unique pure strategy Nash
equilibrium under arbitrarily decisive battlefield outcome functions.
In contrast, conventional multi-battle contests have no pure strategy
equilibrium if battlefield outcome functions are sufficiently decisive.
These results suggest that complementarity can play an important role
in stabilizing the distribution of competitive resources over strategic
conflicts.



1 Introduction

An agent’s marginal value for one resource often depends on her share of
other resources. Ride hailing firms compete to recruit drivers and market
their platform to riders.1 The marginal revenue from recruiting an addi-
tional driver depends in part on the firm’s success marketing their platform
to riders. Social media platforms compete for both users and advertisers.
The marginal revenue from an additional user depends in part on the firm’s
success in obtaining advertisers.2 Military factions compete for both air
supremacy and ground supremacy. The marginal increase in a faction’s con-
trol over a contested region from additional air supremacy may depend in
part on the faction’s level of ground supremacy.3 Pharmaceutical firms com-
pete to convince both doctors and patients of their product’s effectiveness.4

The marginal revenue from persuading an additional patient may depend in
part on the firm’s success in convincing doctors.

This paper considers multi-battle contests where a finite number of agents
compete over a finite number of battlefields. Each agent allocates a stock
of competitive resources between multiple battlefields. In each battlefield,
agents compete over a distinct divisible prize. The share of each prize
awarded to each agent is given by an arbitrarily decisive battlefield outcome
function. Prizes serve as complementary factors with constant elasticity of
substitution. Such contests are shown to possess a unique pure strategy Nash
equilibrium under arbitrarily decisive outcome functions. In contrast, con-
ventional multi-battle conflicts and Blotto games have no pure strategy Nash
equilibrium if outcome functions are sufficiently decisive.

The existence of a unique pure strategy Nash equilibrium under arbitrarily
decisive battlefield outcome functions depends crucially on the smoothly non-
linear relationship between payoffs and battlefield outcomes. This smooth
non-linearity is possible because battlefield outcomes determine shares of
divisible prizes rather than probabilities of obtaining indivisible prizes. The

1Farris et al. (2014) discusses competition for drivers between ride sharing firms.
2Fulgoni and Lipsman (2014) describes complementary users and advertisers.
3Pirnie et al. (2005) discusses complementarity between air and ground supremacy.
4See Hurwitz and Caves (1988) for more on rent seeking by pharmaceutical firms.
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term “divisible prize” has been used to describe the outcome of a conflict over
divisible resources by several authors including König et al. (2017). Divisi-
ble prizes are important for applications in economic and military settings5

where “victory and defeat, although polar opposites, are not binary. There
are thousands of points along the scale that delineate degrees of success”
(Bartholomees, 2008).

The unique Nash equilibrium is shown to be Pareto efficient over the set
of feasible outcomes. Hence any non-equilibrium strategy profile that gives
one agent a greater payoff than she earns in equilibrium will give some other
agent a lower payoff than she earns in equilibrium. This immediately rules
out the possibility of collusive strategy profiles that give every agent a higher
payoff then she earns in equilibrium. While the Nash equilibrium is Pareto
efficient, most other feasible outcomes are Pareto dominated, so the contest
is not strictly competitive. Equilibrium payoffs are shown to be minimax
payoffs in the two-agent case, so any deviation from equilibrium by one agent
can be exploited by the other to obtain an above-equilibrium payoff. The
Pareto efficiency of the unique Nash equilibrium and the presence of minimax
payoffs in the two agent case provide significant barriers to collusion despite
the lack of strict competitiveness.

The remainder of this paper is organized as follows. Section 2 discusses
the related literature. Section 3 formally describes the multi-battle contest.
Section 4 establishes key properties of the best response correspondence. Sec-
tion 5 establishes the existence of a unique pure strategy Nash equilibrium.
Section 6 discusses barriers to collusion under the unique Nash equilibrium.
Section 7 concludes and discusses important implications of the results. All
proofs are provided in Appendix A.

5See Gray et al. (2002), Biddle (2004), and Martel (2011) for more on the measurement
of victory on along continuous dimensions.
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2 Related Literature

Previous literature on multi-battle contests often considers prizes that are
perfect substitutes. Friedman (1958) considers multi-battle contests where
two firms make advertising expenditures to compete over sales in several
distinct marketing areas. Robson (2005) investigates two-player multi-item
contests between resource constrained agents where prizes are perfect sub-
stitutes and outcome functions are probabilistic. Roberson (2006) examines
two-player blotto games with deterministic winner-take-all outcome func-
tions. A survey of the multi-battle contest literature is provided by Kovenock
and Roberson (2010).

Several authors consider specific instances of complementarity in multi-unit
auctions. Englmaier et al. (2009) identify asymmetric equilibria in two-bidder
auctions over three items where a single item is has no value by itself and
three items are worth no more than two items. Szentes and Rosenthal (2003)
identify symmetric mixed strategy equilibria in auctions over three items
where the marginal value increases for the second item and decreases for the
third item. The complementarity in these models has a “chopstick” structure,
reflecting the idea that a single chopstick is of little use and three chopsticks
is little better than two.

Kolmar and Rommeswinkel (2013) examine contests between teams of agents
who exert complementary effort and face linear costs. Analogously, Rai and
Sarin (2009) consider contests where each agent makes multiple complemen-
tary investments to compete over a single prize. The complementarity in
both of these models is between effort levels rather than between prizes. In-
tuitively, this type of complementarity is like the complementarity between
the left oar and the right oar when rowing a boat. If you only paddle on only
one side then you tend to go in circles. Forward progress is most effectively
obtained by paddling on both sides.

Skaperdas and Syropoulos (1998) consider single-battle two-agent contests
with an invisible prize that exhibit complementarity with effort levels, such
that an agent’s valuation for the prize depends on her own effort level. Malueg
and Yates (2006) considers single-battle contests with homogeneous outcome
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functions where agents have a common value for the single indivisible prize.
Ferrarese (2018) considers a multi-agent generalization of Malueg and Yates
(2006) where an agent’s valuation for the single divisible prize depends on
the prize shares obtained by others. In contrast, the present paper considers
contests with complementarity between multiple divisible prizes such that an
agent’s marginal value for each prize depends on her share of other prizes.

Kovenock et al. (2017) consider two-player multi-battle conflicts with deter-
ministic winner-take-all outcome functions where prizes are perfect comple-
ments for the defender and perfect substitutes for the attacker. The com-
plementarity in this multi-battle contest has a “weakest-link” structure such
that the attacker need only win one battle to win the overall contest. Clark
and Konrad (2007) consider the case of two firms that compete in multi-
ple simultaneous patent races with probabilistic outcome functions. These
outcome functions are restricted to have unit decisiveness. Each individual
patent has a linearly additive value. Obtaining all of the patents yields an
additional monopoly rent. If each patent is secured by some firm, but nei-
ther firm secures all of the patents, then they split the monopoly rent. This
monopoly rent is the source of complementarity in their model.

Kovenock et al. (2015) consider two-player four-battle contests where each
player has three possible minimal winning sets consisting of two battlefields
each. If a player wins both of the battles in at least one of their winning sets
then they win the overall contest. Snyder (1989) considers a contest between
two political parties who make campaign expenditures to compete for legisla-
tive seats where each party aims to maximize their probability of obtaining
a majority. Duffy and Matros (2017) examine two-player probabilistic blotto
games where players seek to obtain a majority share of the overall prize value.
Deck et al. (2017) investigate two-player multi-battle conflicts with linear ef-
fort costs where players seek to obtain a majority share of the overall prize
value. The complementarity in these models has a majoritarian structure
where agents are rewarded for obtaining a majority of the prizes.

The complementary in the present paper has a constant-elasticity structure,
which is possible because each battlefield outcome function determines the
share of a divisible prize rather than the probability of obtaining an indivis-
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ible prize. If outcome functions are sufficiently decisive, conventional blotto
games and multi-battle conflicts often have no pure strategy Nash equilib-
rium. Baye et al. (1994) show that Tullock contests where agents expend
costly effort at a constant marginal cost have no pure strategy Nash equilib-
rium if the outcome function is sufficiently decisive. Arbatskaya and Mialon
(2010) show that two-player multi-activity contests where agents expend ef-
fort at constant marginal cost have no pure strategy Nash equilibrium if the
outcome function is sufficiently decisive. Roberson (2006) notes that con-
ventional blotto games have no pure strategy Nash equilibrium unless one
player is strong enough to guarantee complete victory in every battlefield.
In contrast, the multi-battle contests considered by this paper are shown to
possess a unique pure strategy Nash equilibrium under arbitrarily decisive
outcome functions.

3 Complementary Battlefields

Consider a multi-battle conflict where n ≥ 2 agents simultaneously allocate
limited resources overm ≥ 2 complementary battlefields. LetN = {1, . . . , n}
denote the set of agents and B = {1, . . . ,m} denote the set of battle-
fields. Agent i ∈ N is endowed with a stock wi ∈ R++ of competitive
resources. Let xib ∈ R+ denote the quantity of competitive resources that
agent i allocates to battlefield b. The strategy xi = (xi1, . . . , xim) ∈ Rm

+

employed by agent i must satisfy the budget constraint
∑m

k=1 xib = wi.
Let Xi =

{
xi ∈ Rm

+ :
∑m

k=1 xib = wi
}

denote agent i’s strategy set and let
X =

∏
i∈N Xi denote the set of strategy profiles.

In each battlefield, agents compete over a divisible prize. Agent i’s share yib
of prize b is given by the battlefield outcome function γb : Rn →4n−1 which
is assumed to be continuous, homogeneous of degree zero, and independent
from irrelevant alternatives such that if x′kb = 0 and x′jb = xjb for j ∈ N\{i, k}
then

γbi (x
′) =

γbi (x)

1− γbk (x)
(1)

Agent i’s share of prize b is assumed to be increasing in her allocation to
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battlefield b and decreasing in the allocations of other agents to battlefield
b. The characterization of Clark and Riis (1998) then implies that if xjb > 0

then agent i’s share of prize b must be given by

yib = γbi (x) =
µix

a
ib∑n

j=1 µjx
a
jb

(2)

where µ ∈ Rn
++. If zero competitive resources are allocated to some battle-

field b, then agent i’s share yib of prize b is given by γbi (x) = µi/
∑n

j=1 µj.
The parameter a ∈ R++ denotes the decisiveness of the battlefield outcome
function. In the limit as a → ∞ the entirety of prize b is awarded to the
agent who allocates the most resources to battlefield b. Conversely, in the
limit as a→ 0 prize b is equally divided over all the competitors in battlefield
b. Agent i’s battlefield outcome vector is given by yi = (yi1, . . . , yim) ∈ Rm

+ .
Each of the m factors serves as a complementary input to agent i’s payoff,
which exhibits constant elasticity of substitution. If yi /∈ Rm

++ then agent i’s
payoff is given by πi (yi) = 0.6 Otherwise agent i’s payoff πi is given by7

πi (yi) =

(
m∑
b=1

vby
−ci
ib

)− 1
ci

(3)

The share parameter vb ∈ R++ denotes the relative value of prize b. The sum
of all m share parameters is given by

∑m
b=1 vb = 1 without loss of generality

since (
m∑
b=1

λvby
−ci
ib

)− 1
ci

= λ−
1
c

(
m∑
b=1

vby
−ci
ib

)− 1
ci

= λ
− 1
ci πi (4)

The degree of complementary between battlefields for agent i is given by
ci ∈ R+. In the limit as ci → ∞, all m prizes are perfect complements
and agent i’s payoff is given by πi (yi) = min {yi1, . . . , yim}. Conversely, in
the limit as ci → 0, the payoff to agent i takes the Cobb-Douglas form8

πi (yi) =
∏m

b=1 y
vb
ib . Here ci ∈ R+ includes the case where ci = 0 but does

6As shown on page 19, continuity requires that πi (yi) = 0 for all yi /∈ Rm
++.

7See Uzawa (1962) for details regarding the necessity of this functional form.
8See Saito (2012) for a proof of convergence to Cobb-Douglas as ci → 0.
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not include the limiting case of perfect complements where ci → ∞. As
illustrated by Example 1, the Nash equilibrium need not be unique in the
limiting case of perfect complements.

Example 1. Consider the case of two symmetrically endowed agents and
two prizes in the limiting case of perfect complements where ci → ∞. If
x1 = x2 = (θ, wi − θ) with θ ∈ (0, wi) then yib = µi/ (µi + µj). Both agents
are best responding because any unilateral deviation would give the deviator
less of at least one prize. If prizes are perfect complements, such a deviation
would be unprofitable.

4 The Best Response

Agent i’s payoff is continuous in her prize shares because the CES aggregator
function is continuous. By (2) her share of prize b is continuous in her
allocation if any agent allocates a non-zero quantity of resources to battlefield
b. Consequently, agent i’s payoff is continuous in her allocation over the
interior of her strategy set. As illustrated by Example 2, if all n agents
allocate zero resources to battlefield b then agent i can obtain the entirety of
prize b by reallocating an arbitrarily small portion of her resources to it.

Example 2. Consider a simple contest with two players and two battlefields
where a = 1, v =

(
1
2
, 1
2

)
, w = µ = c = (1, 1). Suppose that both players

allocate all of their resources to battlefield 1, so x1 = x2 = (1, 0). Then
agent 1’s outcome profile is given by y1 =

(
1
2
, 1
2

)
and the payoff to agent 1

is given by π1 = 1
2
. If agent 1 reallocates a small portion ε of her resources

from battlefield 1 to battlefield 2 then her outcome vector will equal y′1 =(
1−ε
2−ε , 1

)
and her payoff will equal π′1 =

(
1
2

(
2−ε
1−ε

)
+ 1

2

)−1. Taking the limit as
ε converges to zero obtains lim

ε→0
π′1 = 2

3
> 1

2
= π1.

Proposition 1 states that agent i’s payoff is strictly quasiconcave in her alloca-
tion xi over the interior of her strategy set. Since her payoff is also continuous
over this region, first order conditions are sufficient for the maximization of
her payoff over the interior of her strategy set.
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Proposition 1. Agent i’s payoff πi is strictly quasiconcave over xi ∈ Rn
++.

Proof. See appendix on page 19.

Strict quasiconcavity holds for ci > 0 because agent i’s payoff is then a strictly
increasing function of the strictly concave function

gi (xi) = − 1

ci

m∑
b=1

vbγbi (x)−ci (5)

Similarly, strict quasiconcavity holds for ci = 0 because agent i’s payoff is
then a strictly increasing function of the strictly concave function

log πi =
m∑
b=1

vb log yib (6)

The next proposition states that every resource allocation on the boundary of
agent i’s strategy set yields a strictly lower payoff than some other allocation
in the interior of her strategy set. Thus agent i’s best response always lies in
the interior of her strategy set. Since agent i’s payoff is strictly quasiconcave
over the interior of her strategy set, she cannot have multiple best responses
as a convex combination between any two distinct best responses would yield
a larger payoff.

Proposition 2. For every strategy profile x ∈ X such that xib = 0 for some
b there exits some alternative strategy x′i ∈ Xi such that πi (x′i, x−i) > πi (x).

Proof. See appendix on page 20.

Proposition 2 states that every best response lies in the interior of the strategy
set. Agent i would obtain zero share of prize b if she allocates zero resources
to the battlefield b but some other agent allocates a positive amount. Con-
versely, if none of the other agents allocate resources to battlefield b, then she
could obtain the entirety of prize b by allocating an arbitrarily small amount
of resources to it. Proposition 3 provides the first order conditions for the
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maximization of agent i’s payoff under which agent i equalizes the marginal
benefit of competitive resources in each battlefield.

Proposition 3. A strategy xi ∈ Xi maximizes agent i’s payoff πi if and only
if for all battlefields b and k we have

vb (1− yib)
yciibxib

=
vk (1− yik)
yciikxik

(7)

Proof. See appendix on page 20.

These first order conditions on agent i’s allocation are both necessary and
sufficient for payoff maximization because best responses are always unique
and always lie in the interior of the strategy set. If agent i’s marginal payoff
from additional competitive resources in battlefield k was higher than her
marginal payoff from additional competitive resources in battlefield b then
agent i could achieve a higher payoff by reallocating resources from battle-
field b to battlefield k. Rearranging the first order conditions to isolate the
allocation ratio xib/xik yields

xib
xik

=
vby
−ci
ib (1− yib)

vky
−ci
ik (1− yik)

(8)

Since prizes are net complements, the parameter ci is positive, so the right
hand side of equation (8) is decreasing in yib and increasing in yik. If agent i
is best responding and her share of prize b is larger than her share of prize k,
then her allocation ratio xib/xik must be less than the corresponding share
parameter ratio vb/vk. Conversely, if yib is smaller than yik then xib/xik must
be greater than vb/vk. These results guarantee the uniqueness of the best
response but they do note guarantee its existence. Example 3 illustrates how
a best response can fail to exist.

Example 3. Consider a contest with two agents and two battlefields where
a = 1, c = 1, µ1 = µ2, and v1 = v2. Suppose agent 1 allocates all of her
resources to battlefield 1 such that x1 = (0, 1). Then agent 2 can obtain the
entirety of prize 2 by allocating an arbitrarily small portion of her resources
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to battlefield 2. Hence π2 (x1, x2) < π2 (x1, x
′
2) where x2 = (1− ε, ε) and

x′2 =
(
1− ε

2
, ε
2

)
for all ε ∈ (0, 1). Hence no interior strategy can be a best

response for agent 2. Yet Proposition 2 states that any best response must lie
in the interior of the strategy space, so agent 2 has no best response against
x1 = (0, 1).

5 The Nash Equilibrium

The marginal value of a small increase in agent i′s share of prize b depends on
her share of the other prizes. Complementarity between prizes incentivizes
agent i to allocate relatively more competitive resources to battlefields where
she is relatively less successful. As a result of this complementarity, Propo-
sition 4 states that agent i must receive the same share of each prize in
equilibrium.

Proposition 4. In every pure strategy Nash equilibrium, yib = yik for every
agent i and all battlefields b and k.

Proof. See appendix on page 21.

If agent i’s share of prize b is larger than her share of prize k then some other
agent j must have a larger share of prize k than prize b, so agent i’s allocation
ratio xib/xik must be greater than agent j’s allocation ratio xjb/xjk by equa-
tion (2). But if both agents are best responding then equation (8) implies
that agent i’s allocation ratio must be lower than agent j’s allocation ratio.
Hence agent i must obtain the same share of each prize in equilibrium, so
equation (8) implies that her equilibrium allocation ratio must equal the cor-
responding share parameter ratio. Proposition 5 characterizes the resulting
Nash equilibrium allocation profile.

Proposition 5. The unique pure strategy Nash equilibrium is x∗ib = wivb.

Proof. See appendix on page 21.
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Surprisingly, the Nash equilibrium strategy profile depends on neither the
level of complementarity between prizes nor on the decisiveness of the bat-
tlefield outcome function. Yet the first order conditions imply that agent i’s
best response generally depends on both these parameters. Since yib = yik in
equilibrium, equation (8) reduces to

xib
xik

=
vb
vk

(9)

Since the terms involving a and ci cancel out, neither the level of decisiveness
nor the degree of complementarity effect the equilibrium allocation ratio. In
contrast, conventional multi-battle contests and blotto games generally have
no pure strategy Nash equilibrium if the battlefield outcome function is suffi-
ciently decisive. Arbatskaya and Mialon (2010) show that multi-activity con-
tests where agents expend effort at constant marginal cost have no pure strat-
egy Nash equilibrium under sufficiently decisive outcome functions. Rober-
son (2006) notes that conventional blotto games have no pure strategy Nash
equilibrium unless one player is strong enough to guarantee victory in every
battlefield.

If the battlefield outcome function (2) is highly decisive then agent i can
obtain almost the entirety of prize b by allocating slightly more resources
to battlefield b than her competitors. Yet as illustrated by Example 4, the
presence of net complementarity between prizes makes such deviations from
equilibrium unprofitable. In the absence of this complementarity, such devia-
tions would be profitable under highly decisive battlefield outcome functions.

Example 4. Consider a contest with two players and two battlefields such
that w = µ = c = (1, 1), and v =

(
1
4
, 3
4

)
. If each player allocates resources

to each battlefield in proportion to the share parameters such that x1 =

x2 = v then each player obtains half of each prize and the outcome vectors
are given by y1 = y2 =

(
1
2
, 1
2

)
so payoffs are given by π1 = π2 = 1

2
. By

equation (8), both agents are best responding. Now suppose agent 1’s payoff
is instead linear in her prize shares such that πi (x) = 1

4
yi1 + 3

4
yi2. In this

case, if agent 1 employs the alternative strategy x′1 = (0, 1) then for highly
decisive battlefields her limiting payoff is given by lim

a→∞
π1 (x′1, x2) = 3

4
> 1

2
=
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lim
a→∞

π1 (x1, x2).

6 Barriers to Collusion

Proposition 6 states that agent i’s Nash equilibrium payoff is a function of
her endowment and the decisiveness of the battlefield outcome function. Al-
though the equilibrium strategy profile is unresponsive to the decisiveness
parameter, the equilibrium payoffs are shown to exhibit greater sensitivity
to initial endowments under higher decisiveness levels. As the battlefield
outcome function becomes increasingly decisive, the agent with the largest
initial endowment earns an increasingly large share of the equilibrium pay-
offs. Conversely, decreasing the decisiveness parameter decreases the share
of equilibrium payoffs earned by the agent with the largest initial endowment
without distorting equilibrium allocation behavior.

Proposition 6. The unique Nash equilibrium payoff to agent i is given by

π∗i =
µiw

a
i∑n

`=1 µ`w
a
`

(10)

Proof. See appendix on page 22.

Agent i’s unique Nash equilibrium payoffs are proportional to µiwai because
equilibrium allocations to each battlefield are given by xi = wivb and her
share of prize b is proportional to µixaib. Proposition 7 states that the Nash
equilibrium maximizes the total payoff to all n agents, so the equilibrium
strategy profile is Pareto efficient over the set of feasible outcomes. Any
non-equilibrium strategy profile that gives one agent a greater payoff than
she earns in equilibrium must give some other agent a lower payoff than she
earns in equilibrium. This immediately rules out the possibility of collusive
strategies that give each agent a higher payoff then she earns in equilibrium.

Proposition 7. The maximum total payoff to all n agents over all feasible
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strategy profiles x ∈ X is given by

max
x∈X

n∑
i=1

πi (x) = 1

Proof. See appendix on page 22.

The unique Nash equilibrium maximizes the total payoff to all n agents
because the prizes are net complements and the equilibrium equalizes agent
i’s share of each prize. The resulting Pareto efficiency of the Nash equilibrium
immediately rules out the possibility of collusive strategies that give each
agent a higher payoff then she earns in equilibrium. Proposition 8 states
that an agent can always obtain an above-equilibrium payoff in the two agent
case if her opponent employs a non-equilibrium strategy. Hence the Nash
equilibrium payoffs are also the minimax payoffs in the two agent case because
agent i can always obtain at least her Nash equilibrium payoff by mirroring
agent j’s strategy.

Proposition 8. If agent j employs a non-equilibrium strategy and n = 2

then agent i can obtain an above-equilibrium payoff.

Proof. See appendix on page 23.

As illustrated by Example 5, the aggregate total payoff depends on the al-
location profile. Although the equilibrium outcome is Pareto efficient, other
feasible outcomes are Pareto dominated. Even in the two agent case, both
the “size of the pie” and the “division of the pie” depend on the allocation
strategies, so the contest is not strictly competitive. Together, the Pareto
efficiency of the unique Nash equilibrium and the presence of minimax equi-
librium payoffs in the two agent case provide strong barriers to collusion
despite the lack of strict competitiveness.

Example 5. Consider a contest with two players and two battlefields where
a = 1, v =

(
1
2
, 1
2

)
, and w = µ = c = (1, 1). If both agents employ their

equilibrium strategies we have xib = 1
2
and yib = 1

2
for every agent i and

every battlefield b. Hence the payoff to each agent is given by πi = 1
2
, so the
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aggregate payoff is given by π1 + π2 = 1. Now suppose instead that agent 1
employs the non-equilibrium strategy x′1 =

(
1
3
, 2
3

)
and agent 2 employs the

non-equilibrium strategy x′2 =
(
2
3
, 1
3

)
. In this case agent 1’s outcome profile

is y′1 =
(
1
3
, 2
3

)
and agent 2’s outcome profile is y′2 =

(
2
3
, 1
3

)
. Hence the payoff

to each agent is given by π′i = 4
9
, and the total payoff to both agents is

π′1 + π′2=
8
9
< 1 = π1 + π2.

7 Conclusion

This paper considers multi-battle conflicts where n agents allocate competi-
tive resources to compete over m complementary battlefields. The share of
each prize awarded to each agent is given by an arbitrarily decisive battle-
field outcome function. Payoffs exhibit nonlinear dependence on battlefield
outcomes with an arbitrary degree of complementarity. These contests are
shown to possess a unique pure strategy Nash equilibrium under arbitrarily
decisive outcome functions. In contrast, conventional multi-battle contests
have no pure strategy Nash equilibrium if outcome functions are sufficiently
decisive. These results suggest that complementarity can play an important
role in stabilizing the distribution of competitive resources.

The unique Nash equilibrium is shown to be Pareto efficient over the set
of feasible outcomes. This immediately rules out the possibility of collusive
strategy profiles that give every agent a higher payoff then she earns in equi-
librium. In the two agent case, equilibrium payoffs are shown to be minimax
payoffs, so any deviation from equilibrium by one agent can be exploited by
the other to obtain an above-equilibrium payoff. Although the Nash equilib-
rium is Pareto efficient, most other feasible outcomes are Pareto dominated,
so the contest is not strictly competitive. Together, Pareto efficiency and the
presence of minimax payoffs in the two agent case provide significant barriers
to collusion despite the lack of strict competitiveness.

Further research is necessary to understand several important generaliza-
tions of the present model. If prizes were net substitutes instead of net
complements then payoffs might fail to be quasiconcave and the first order
conditions provided by Proposition 3 might fail to characterize the best re-
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sponse. Future research should characterize Nash equilibria for the case of
net substitutes. The present battlefields exhibit distinct valuation levels but
share a symmetric decisiveness level. Future research should consider the
case of asymmetric decisiveness across battlefields. Agents presently have
symmetric valuations for battlefield b. Future research should consider the
case where each agent has a distinct valuation for battlefield b.
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A Proofs

Proof of Payoff Continuity. If yi ∈ Rm
++then the payoff to agent i is given by

πi (yi) =

(
m∑
b=1

vby
−ci
ib

)− 1
ci

=
1(∑m

b=1
vb
y
ci
ib

)ci (11)

Since ci > 0 the fraction vb/yciib increases without bound as yib converges to
zero, so the sum

(∑m
b=1

vb
y
ci
ib

)ci
increases without bound as as yib converges to

zero. Hence πib (yi) converges to zero as yib converges to zero, so agent i’s
payoff πi is continuous in her success vector yi

Proof of Proposition 1. Suppose ci > 0. Let gi denote an increasing function
of πi given by

gi = − 1

cπcii
= − 1

ci

m∑
b=1

vby
−ci
ib (12)

Differentiating yib with respect to xib yields

∂yib
∂xib

=
∂

∂xib

[
µix

a
ib∑n

j=1 µjx
a
jb

]
=

∑
j 6=i µjx

a
jb(∑n

j=1 µjx
a
jb

)2aµixa−1ib

=
a

xib

(∑
j 6=i µjx

a
jb∑n

j=1 µjx
a
jb

)(
µix

a
ib∑n

j=1 µjx
a
jb

)
=
a (1− yib) yib

xib

So differentiating gi with respect to xi yields
∂gi
∂xib

=
∂gi
∂yib

∂yib
∂xib

=
vb

y1+ciib

a (1− yib) yib
xib

=
avb (1− yib)

yciibxib
(13)

Since the numerator of (13) is decreasing in xib and the denominator is in-
creasing in xib we have ∂2gi

∂x2ib
< 0. Since (13) is constant in xih for all h 6= b,

the mixed second order partial derivatives are given by ∂2gi
∂xib∂xih

= 0. Thus
the matrix of second order partial derivatives is negative definite, so gi is
strictly concave in xi. Hence πi is strictly quasiconcave in xi for ci > 0 since
gi is a strictly increasing function of πi. If ci = 0 then the payoff to agent i
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is given by

πi =
m∏
b=1

yvbib (14)

Taking the logarithm of both sides obtains

log πi =
m∑
b=1

vb log yib (15)

Differentiating with respect to xib yields

∂

∂xib

[
log πi

]
=

vb
yib

∂yib
∂xib

=
a (1− yib)

xib
(16)

Thus ∂2 log πi
∂x2ib

< 0 and ∂2 log πi
∂xib∂xih

= 0 for b 6= h. Hence πi is strictly quasiconcave
in xi for ci = 0.

Proof of Proposition 2. Let x ∈ X such that xib = 0. Now consider the
alternative strategy x̂i ∈ Xi such that

x̂ik = ε
wi
m

+ (1− ε)xik (17)

If xjb > 0 for some j 6= i then πi (x) = 0 < πi (x̂i, x−i). Alternatively, if
xjb = 0 for all j then γbi (x) = µi/

∑n
j=1 µj < 1 = yib (x̂i, x−i) for all ε > 0.

Since xjb = 0 for all j ∈ N there exists at least one battlefield h ∈ B such
that xjh > 0 for some j 6= i. Then the limiting value of γhi (x̂i, x−i) as ε
approaches zero from above is given by

lim
ε↓0

γhi (x̂i, x−i) = lim
ε↓0

µixih∑n
j=1 µjx

a
jh

= yih (x) (18)

Hence πi (x̂i, x−i) > πi (x) for some ε > 0 since πi is continuous over yi ∈
Rm

++.

Proof of Proposition 3. Suppose that xi is a best response for agent i. By
Proposition 2, xi must lie in the interior of agent i’s strategy set. Hence agent
i’s marginal benefit from increasing her allocation to battlefield i must equal
her marginal benefit from increasing her allocation to battlefield j. Since
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agent i’s payoff is continuous over the interior of her strategy set we have
∂πi
∂xib

=
∂πi
∂xik

(19)

vb (1− yib)
yciibxib

=
vk (1− yik)
yciikxik

(20)

Conversely, if xi satisfies these first order conditions then it must lie in the
interior of agent i’s strategy set. By Proposition 2 agent i’s best response
must lie in the interior of her strategy set. By Proposition 1 agent i’s payoff
πi is strictly quasiconcave over this region. Since her payoff is also continuous
in her strategy over this region, the first order conditions on xi are sufficient
for maximization of agent i’s payoff over her strategy set.

Proof of Proposition 4. If yib < yik then we have∑
6̀=i

y`b = (1− yib) > (1− yik) =
∑
` 6=i

y`k (21)

Hence there exists j 6= i such that yjk < yjb and

yibyjk < yikyjb (22)(
µix

a
ib

Zb

)(
µjx

a
jk

Zk

)
<

(
µix

a
ik

Zk

)(
µjx

a
jb

Zb

)
where Zb =

n∑
`=1

µ`x
a
`b (23)

xibxjk < xikxjb (24)

By Proposition 3 the first order conditions on xi can be written as

xib
xik

=
vb (1− yib) y−ciib

vk (1− yik) y−ciik

(25)

If x is a Nash equilibrium then by equation (25) we have

yib < yik
yjk < yib

=⇒ xib
xik

>
vb
vk

>
xjb
xjk

=⇒ xibxjk > xikxjb (26)

But this contradicts equation (24).

Proof of Proposition 5. By Proposition 4 if x is a Nash equilibrium strategy
profile then for every agent i there exists ȳi ∈ [0, 1] such that for every battle-
field b agent i’s share of prize b is given by yib = ȳi. Hence by Proposition 3
the necessary and sufficient first order conditions on xi for the maximization
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of πi are given by
vb (1− ȳi)
xibȳ

ci
i

=
vk (1− ȳi)
xikȳ

ci
i

(27)

vb
vk

=
xib
xik

(28)

Hence xibvk = xikvb and summing over k obtains xib = wivb.

Proof of Proposition 6. By Proposition 4 if x is a Nash equilibrium strategy
profile then for every agent i there exists ȳi ∈ [0, 1] such that for every
battlefield b agent i’s share of prize b is given by yib = ȳi. Hence the payoff
to agent i can be written as

πi =

(
m∑
b=1

vbȳ
−ci
i

)− 1
ci

= ȳi

(
m∑
b=1

vb

)− 1
ci

Now since
∑m

b=1 vb = 1 we have

πi = ȳi =
µiw

a
i∑n

`=1 µ`w
a
`

(29)

Proof of Proposition 7. Let Y denote the set of all y ∈ Rn×m
+ such that for

all battlefields b ∈ B the sum of all prize shares is given by
∑n

i=1 yib = 1.
Hence Y includes all feasible outcomes. Let gi denote a strictly increasing
function of πi given by

gi = − 1

ciπ
ci
i

= − 1

ci

m∑
b=1

vby
−ci
ib (30)

For θ ∈ 4n−1 let Gθ denote a weighted sum of all gi given by

Gθ =
n∑
i=1

θigi = −
n∑
i=1

1

ci

m∑
b=1

θivby
−ci
ib (31)

Hence Gθ is increasing in πi for each agent i. Now differentiating Gθ with
respect to yib yields ∂Gθ

∂yib
= θivb

y
ci+1

ib

> 0 and twice differentiating Gθ with respect

to yib yields ∂2Gθ
∂y2ib

= − (ci + 1) θivb
y
ci+2

ib

< 0. The cross partial derivatives are

given by ∂G
∂yib∂yjb

= 0. Hence Gθ is strictly concave over yNb = (y1b, . . . , ynb) ∈
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Rm
++ so the first order conditions on yNb for the maximization of Gθ are given

by
θivb

yci+1
ib

=
∂G

∂yib
=

∂G

∂yjb
=

θjvb

y
cj+1
jb

(32)

θi
θj

=
yci+1
ib

y
cj+1
jb

=⇒ yib = ȳi (33)

Thus if y maximizes Gθ over Y then the payoff to agent i satisfies πi = ȳi.
Now if y ∈ Y maximizes the total payoff

∑n
i=1 πib over Y then it is Pareto

efficient over Y , so there exists some θ ∈ 4n−1 such that y maximizes Gθ

over Y and the total payoff is given by
n∑
i=1

πi =
n∑
i=1

ȳi = 1

Proof of Proposition 8. Let xj denote an allocation employed by agent j and
suppose that agent i employs the allocation

xib =
wixjb
wj

(34)

Then the share of prize b awarded to agent i is given by

yib =
µix

a
ib

µixaib + µjxajb
=

µiw
a
i

µiwai + µjwaj
= ȳi (35)

Hence the payoff to agent i is given by

πi =

(
m∑
b=1

vbȳ
−ci
i

)− 1
ci

= ȳi

(
m∑
b=1

vb

)− 1
ci

=
µiw

a
i

µiwai + µjwaj
(36)

Thus by Proposition 6 agent i can always obtain at least her unique Nash
equilibrium payoff. Now if xjb 6= wjvb then the strategy given by Equation
(34) does not satisfy the first order conditions for the maximization of agent
i’s payoff. Hence it is not a best response by Proposition 3, so there exists
some alternative strategy that does better.
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