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1 Introduction

Equilibrium is a powerful tool for understanding strategic behavior. Even in very complex

games, equilibrium predictions often describe long-run behavior quite well. Perfect rational-

ity is frequently unnecessary for convergence to equilibrium; simple adaptive processes often

drive long-run behavior towards equilibrium predictions. For this reason, adaptive models

have long been employed to justify the application of equilibrium solution concepts in the

presence of bounded rationality (e.g., Cournot et al., 1897; Nash, 1951). Further, theoretical

stability criteria are frequently employed to identify which equilibria are likely to emerge as

the long-run outcome of adaptive dynamics (e.g., Hopkins and Seymour, 2002; Taylor and

Jonker, 1978).

In strategic environments with a stable equilibrium, the long-run predictions of adap-

tive models often coincide with the predictions of equilibrium models, as adaptive models

typically converge to stable equilibria. However, in strategic environments with unstable

equilibria, adaptive dynamics may fail to converge, leading boundedly rational agents to

exhibit persistently nonconvergent behavior and producing clean separation between the

long-run predictions of adaptive models and those of equilibrium models. Characterizing

long-run behavior in the absence of stable Nash equilibria is the primary focus of this paper.

In particular the focus will be on identifying which aspects of long-run behavior are captured

by equilibrium models, stability criterion, and adaptive dynamics.1

To test theoretical predictions from these three classes of models, this paper reports

the results of experimental all-pay auctions2 with highly unstable Nash equilibria. This

class of games features a continuous range of pure strategies, so there a number of ways

instability may occur. To experimentally test adaptive models of bidding behavior, these

experiments provide subjects with continuous feedback, allow subjects to adjust their bids at

will throughout each period, and have each subject earn mean-matching payoffs continuously

over time. We examine two different all-pay auctions: one with two bidders and one prize

1For more on the importance of understanding adaptive dynamics out of equilibrium, see Sandholm (2010)
or Weibull (1997).

2Specifically we use all-pay auctions with n bidders who compete over n− 1 equally valuable prizes. The
top n− 1 bidders each receive a prize, while the lowest bidder receives no prize. As in the standard all-pay
auction, every bidder pays her bid.
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(henceforth, “auction 1”) and one with three bidders and two prizes (henceforth, “auction

2”).

While auction 2 differs from auction 1 only in that it has one additional bidder and one

additional prize, we show that it exhibits several key differences in theoretical predictions.

For both auctions, Nash equilibrium involves bidders employing a mixed bidding strategy

that leads to zero expected earnings. Because auction 2 has an additional prize, the equilib-

rium bid distribution has a higher mean in auction 2. The logit quantal response equilibrium

(McKelvey and Palfrey, 1995) also predicts higher bids in auction 2. However, in contrast to

the Nash prediction of zero expected earnings in both auctions, the logit quantal response

equilibrium predicts positive payoffs for auction 2 and negative payoffs for auction 1. Each

auction also exhibits very different stability properties. We show that auction 1 is globally

neutrally stable (Theorem 3) and that auction 2 is highly unstable (Theorem 1). These

results imply that adaptive dynamics exhibit convergence in auction 1, but exhibit non-

convergent limit cycles in auction 2. We also show that these limit cycles are clockwise in

the two-dimensional space of maximal earnings and optimal bids.

These theoretical results lead to several clear hypotheses for our experiment. We hypoth-

esize that bids will be higher in auction 2 than auction 1 (Hypothesis 1), that payoffs will

also be higher in auction 2 than auction 1 (Hypothesis 2), that auction 2 will exhibit greater

instability than auction 1 (Hypothesis 3), and that non-convergent behavior will feature

clockwise cycles (Hypothesis 4). Our results are remarkably consistent these hypotheses.

We find higher average bids and payoffs in auction 2 than auction 1. Auction 2 exhibited

significantly greater instability and significantly greater deviation from Nash equilibrium

than auction 1. Bidding behavior in both auctions exhibited pronounced clockwise cycles

identified by a positive cycle-rotation index.

However, observed bidding behavior also exhibits several significant departures from both

Nash equilibrium and logit quantal response equilibrium. Average bids in both auction 1

and auction 2 were significantly lower than Nash equilibrium predictions. Consequently,

average payoffs were significantly greater than zero in both auctions, contrasting with the

logit quantal response equilibrium prediction of negative mean payoffs in auction 1.

As an additional treatment, orthogonal to our auction design, we also vary the way that
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information is presented to subjects. In the payoff information treatment subjects observe

the instantaneous payoffs to all possible bids. In the social information treatment, subjects

observe the current bids employed by all other subjects and their current instantaneous pay-

offs. This is merely a different way to present the same information as subjects can infer the

same information about the current state of the game from either informational treatment.

Our suspicion was that this differential presentation might alter bidding behavior, making

subjects more likely to optimize under payoff information and making subjects more likely

to imitate under social information. Since this is a purely behavioral intervention, both equi-

librium and adaptive models predict no treatment effect from this differential presentation

of information. (Hypothesis 5).

In auction 1, payoff information produces lower bids, higher payoffs and greater instabil-

ity. In both auctions, the cycles predicted by adaptive models are more pronounced under

payoff information. It is difficult to fully explain these results, but we do note two important

points. The stronger effect of information on auction 1 rather than auction 2, may sug-

gest global neutral stability is a weaker condition than positive definiteness. Additionally,

the measure entirely determined by actual behavioral dynamics, the cycle-rotation index, is

most affected by this treatment intervention. We thus see this treatment intervention an

important vehicle for future research on adaptive dynamics.

From a big picture standpoint, these results tell us how to identify when equilibrium

reliably characterizes aggregate behavior. When equilibria satisfy stability conditions, they

describes long-run behavior well. When equilibria fail to satisfy stability conditions, they

predict long run behavior poorly, but adaptive models still provide a reliable characterization

long-run behavior.

The paper contributes to the small, but burgeoning area of literature that studies the

properties of disequilibrium dynamics in continuous-time games (i.e., Oprea et al., 2011;

Cason et al., 2014). Consistent with Cason et al., we observe persistent, disequilibrium

cycles that cannot be predicted by standard equilibrium-based models of game theory. Our

paper extends these designs from games with two and three pure strategies to one with a

continuum of pure strategies. Because players have a continuous range of pure strategies,

there are several different ways that instability can occur. Our theory section identifies
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one particular cyclical pattern of disequilibrium behavior which is consistently predicted by

adaptive models and our results section shows that this particular pattern is found within

our data, providing stronger evidence for the predictive power of adaptive models.

The paper also contributes to the experimental literature on bidding behavior in all-

pay auctions (see Dechenaux et al., 2014, for a survey). Previous experimental studies (e.g.,

Gneezy and Smorodinsky, 2006; Lugovskyy et al., 2010; Ernst and Thöni, 2013) of the all-pay

auction conduct a sequence of discrete rounds in which subjects secretly select their bids and

the single highest bidder receives a price. To our knowledge, none of these papers conduct

all-pay auctions in continuous time, a necessary condition for testing long-run predictions

from adaptive dynamics.

This paper makes use of an already existing rich collection of theoretical models as the

basis for many of its experimental tests, including theoretical predictions from both Nash

equilibrium and the logit quantal response equilibrium described by Anderson et al. (1998),

Baye et al. (1996), and McKelvey and Palfrey (1995). It also tests theoretical stability cri-

teria described by Hopkins and Seymour (2002) and Taylor and Jonker (1978) and adaptive

dynamics described by Fudenberg and Levine (1998). This paper also contributes the liter-

ature applying evolutionary stability concepts to experimental data (e.g., Crawford, 1991;

Van Huyck et al., 1991). Our paper’s novel experimental design provides a clean separation

between the predictions of equilibrium models and those of adaptive dynamics in the all-pay

auction, strongly rejecting the hypothesis of long-run behavioral stability. To our knowledge,

these contributions are unique within the literature.

As a secondary treatment, our experiment also varies the way that information is pre-

sented in an attempt to learn more about imitative and optimization dynamics and their

relation with stability. Previous literature has also investigated adaptive dynamics and sta-

bility without the use of continuous time. Much like our inconclusive finding on imitation,

there appears to be little consensus on the predictive success or applicability of imitative

models. Tests of imitative models using a wide variety of experimental designs have found

evidence both in favor (Huck et al., 1999; Offerman et al., 2002; Feri et al., 2011) and against

(Cheung and Friedman, 1998; Friedman et al., 2015) the predictive power of imitative over

optimization models. Similarly, research on dynamic cognition and behavioral learning,
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which like our paper examines how individuals respond to information about games, finds

both support (Offerman et al., 2002) and opposition (Ho et al., 2007; Camerer and Hua Ho,

1999) to the notion that individuals respond to payoff information by imitating previous ac-

tions that earned higher payoffs. Perhaps closest to this informational treatment, Apesteguia

et al. (2007) vary information in order to identify imitation. Unlike our design, their infor-

mational treatments vary whether players receive information about their direct competitors

or other subjects with whom they do not directly compete.

This paper proceeds as follows: Section 2 describes the structure of each auction, presents

their respective equilibrium predictions, and characterizes their respective adaptive dynam-

ics. Section 3 presents the full design and procedures of the experiment. Section 4 provides

our hypotheses. Section 5 presents the main results and Section 6 concludes.

2 Theory

In all-pay auctions, bidders expend unrecoverable effort to compete over a limited number

of prizes. Prizes are awarded to agents who expend the most effort, but every agent bears

the cost of her effort, even if she does not win a prize. All-pay auctions are frequently

employed as models for strategic environments that involve both conflict and unrecoverable

costs such as political lobbying (Baye et al., 1993), patent races (Marinucci and Vergote,

2011), biological competition (Chatterjee et al., 2012), and international warfare (Hodler

and Yektaş, 2012).

Consider an all-pay auction where n bidders compete over n − 1 prizes. Each bidder

simultaneously selects a bid b ∈ [0, w]. All but the lowest bidder receives an identically

valuable prize with publicly known value v < w. Every bidder must pay her bid. If multiple

bidders are tied for the lowest bid, then the tie is broken at random. Let L(s) denote the

lowest bid under the strategy profile s ∈ Rn, let E(s) denote the number of bids equal to

L(s), and let H(s) = (E(s)− 1)/E(s). Accordingly, the expected payoff to bidder i is given

by:

πi (s) =

v − bi if bi > L(s)

vH(s)− bi if bi ≤ L(s)

. (1)
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Hence the probability of receiving a prize by bidding b ∈ [0, w] against opponents who employ

the continuous mixed strategy F is given by

P (b|F ) =
n−1∑
m=1

(
n− 1

m

)
F (b)m(1− F (b))n−m−1 (2)

and the expected payoff to a bidder who bids b ∈ [0, w] against opponents who employ the

continuous mixed strategy F is given by

π(b|F ) = vP (b|F )− b. (3)

Further, the expected payoff to a bidder who employs the mixed strategyG against opponents

who employ the mixed strategy F is given by

π(G|F ) =

ˆ w

0

π(b|F ) dG(b) = v

ˆ w

0

P (b|F ) dG(b)−
ˆ w

0

b dG(b). (4)

In this paper, we focus on two special cases of this all-pay auction that exhibit very different

stability properties. We refer to the all-pay auction with two bidders competing over one

prize as “auction 1” and we refer to the all-pay auction with three bidders competing over

two prizes as “auction 2.” Hence the probability of winning auction 1 by bidding b ∈ [0, w]

against opponents who employ the mixed strategy F is given by

P (b|F ) = F (b) (5)

and the probability of winning auction 2 by bidding b ∈ [0, w] against opponents who employ

the mixed strategy F is given by

P (b|F ) = 2F (b)− F (b)2 (6)
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Figure 1: The Nash equilibrium bid distributions. The solid green line illustrates the
equilibrium bid distribution for auction 1 and the dashed blue line illustrates the equilibrium bid
distribution for auction 2.

2.1 Nash Equilibrium

Neither auction 1 nor auction 2 have a pure strategy Nash equilibrium, but they each have a

unique symmetric mixed strategy Nash equilibrium.3 The equilibrium bidding distribution

for auction 1 was derived by Baye et al. (1996), and is given by

Φ(bi) =
bi
v

for bi ∈ [0, v] (7)

The equilibrium bidding distribution for auction 2 was derived by Barut and Kovenock

(1998)

Φ(bi) = 1−
√

1− bi
v

for bi ∈ [0, v] (8)

Figure 1 illustrates the Nash equilibrium bid distribution for each auction. The horizontal

axis illustrates potential bids b ∈ [0, w] and the vertical axis illustrates the equilibrium

3As discussed by Oprea et al. (2011), symmetric Nash equilibria tend to characterize the long-run outcome
of repeated play under single population mean-matching more reliably than asymmetric Nash equilibria.
Since our experimental design involves single population mean matching in continuous time, the symmetric
Nash equilibrium is the most relevant theoretical prediction. That being said, investigating the emergence
of asymmetric Nash equilibria in multi-population settings could provide an avenue for interesting future
research.
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cumulative probability Φ(b). Note that the Nash equilibrium bid distribution of auction 2

first-order stochastically dominates the Nash equilibrium bid distribution of auction 1, so

Nash equilibrium predicts that bidders will bid more aggressively in auction 2.

2.2 Stability

To evaluate the stability of these Nash equilibria, we first consider the positive and negative

definiteness conditions described by Hopkins and Seymour (2002). In a symmetric game

with expected payoff function π(b|F ), an equilibrium mixed strategy distribution Φ with

density function φ is said to be positive definite if the quadratic form

Q (Z) =

ˆ
DFπ(b|Φ)Z(b) dZ(b) (9)

is strictly positive for all Z(b) = G(b) − Φ(b) where G 6= Φ is an arbitrary non-equilibrium

distribution with density function g. Here DFπ(b|Φ) denotes the linearization of the payoff

function π(b|F ) at F = Φ. Conversely, Φ is said to be negative definite if the quadratic

form Q(Z) is strictly negative. An equilibrium strategy that is neither positive definite nor

negative definite is said to be indefinite. In all-pay auctions, this quadratic form can be

written as

Q (Z) =

ˆ w

0

∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

Z (b) dZ (b) (10)

Intuitively, an equilibrium strategy is negative definite if any sufficiently small deviation

from equilibrium creates incentives that push behavior back towards equilibrium. Conversely,

an equilibrium strategy is positive definite if any sufficiently small deviation from equilibrium

creates incentives that push behavior farther away from equilibrium. To see why, suppose

that bidders exhibit a small deviation from the equilibrium bid distribution Φ to a non-

equilibrium bid distribution G. If G is sufficiently close to Φ then the expected payoff to a

bid b ∈ [0, w] against G is linearly approximated by

π̃ (b|G) =
∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

Z (b) (11)
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and the quadratic form Q(Z) can be written as

ˆ w

0

π̃ (b|G) dZ(b) =

ˆ w

0

π̃ (b|G) dG(b)−
ˆ w

0

π̃ (b|G) dΦ(b) = π̃(G|G)− π̃(Φ|G). (12)

Thus Q(Z) provides a linear approximation for the difference between the expected payoff

to the non-equilibrium strategy G against itself and the expected payoff to the equilibrium

bidding strategy Φ against G. If Q(Z) is strictly positive then the approximated payoff

to the alternate bidding strategy G is strictly greater than the approximated payoff to the

equilibrium bidding strategy. Conversely, if Q(Z) is strictly negative then the approximated

payoff to the alternate bidding strategy G is strictly less than the approximated payoff to

the equilibrium bidding strategy. If the alternate strategy G is sufficiently close to the

equilibrium strategy Φ then this local approximation accurately ranks the expected payoffs

to each strategy.

Theorem 1. The Nash equilibrium for auction 2 is positive definite.

Proof. The Nash equilibrium bid distribution for auction 2 is given by Φ(b) = 1−
√

1− b/v

for all b ∈ [0, v] and the expected payoff function is given by π(b|F ) = 2vF (b)− vF (b)2 − b

so the linearization of the expected payoff function π(b|F ) at F = Φ is given by

∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

= 2v(1− Φ(b)). (13)

Now let Z(b) = G(b)− Φ(b) where G 6= Φ is an arbitrary non-equilibrium distribution with

density function g. The quadratic form Q(Z) from Equation (9) is given by

Q(Z) = 2v

ˆ w

0

√
1− b/v Z (b) dZ (b)

= 2v

ˆ w

0

√
1− b/v d

(
Z (b)2 /2

)
= 2v

[
1

2
Z (b)2

√
1− b/v

]w
0

− v
ˆ w

0

Z (b)2 d
(√

1− b/v
)

= −v
ˆ w

0

Z (b)2 d

db

[√
1− b/v

]
db (14)

Thus is the quadratic form Q(Z) strictly positive since
d

db

[√
1− b/v

]
< 0.
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Theorem 1 indicates that the unique Nash equilibrium of auction 2 is positive definite

and in therefore unstable under a wide variety of adaptive models. Hopkins and Seymour

(2002) show that every positive definite mixed strategy Nash equilibrium is an unstable point

under all positive definite adaptive dynamics. Conversely, they show that every negative

definite mixed strategy Nash equilibrium is a locally stable stationary point under all positive

definite adaptive dynamics. Further, Hopkins (1999) shows that these stability results for

positive definite adaptive dynamics extend to the both the best response dynamic and to

any sufficiently precise perturbed best response dynamic.

Theorem 2. The Nash equilibrium for auction 1 is indefinite.

Proof. The Nash equilibrium bid distribution for auction 1 is given by Φ(b) = v/b for all

b ∈ [0, v] and the expected payoff function is given by π(b|F ) = vF (b)− b so

∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

= v (15)

Now let Z(b) = G(b)− Φ(b) where G 6= Φ is an arbitrary non-equilibrium distribution with

density function g. Then the quadratic form Q(Z) from Equation (10) can be written as

Q(Z) = v

ˆ w

0

Z (b) dZ (b) =
1

2
vZ(w)2 (16)

Thus Q(Z) = 0 since we have Z(w) = Φ (w)−G (w) = 1− 1 = 0.

Theorem 2 indicates that the Nash equilibrium for auction 1 is neither positive definite nor

negative definite. It should be noted that positive and negative definiteness are local stability

conditions that only describe the incentives created by small deviations from equilibrium. In

contrast, a Nash equilibrium mixed strategy distribution Φ is said to be globally neutrally

stable (Sandholm, 2010) if

π(Φ|G) ≥ π(G|G) (17)

for any non-equilibrium mixed strategy distribution G 6= Φ. Global neutral stability implies

that the Nash equilibrium strategy does weakly better against any alternative strategy than

this alternative strategy does against itself. So if a player’s opponents were to employ
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the non-equilibrium mixed strategy G then she would be weakly better off employing the

equilibrium strategy Φ than the non-equilibrium strategy G.

Theorem 3. The Nash equilibrium for auction 1 is globally neutrally stable.

Proof. The Nash equilibrium strategy for auction 1 is given by Φ(b) = v/b for all b ∈ [0, v]

and the expected payoff function is given by π(b|F ) = vF (b)− b. Let F 6= Φ some arbitrary

arbitrary non-equilibrium distribution on [0, w]. In this case, we have

ˆ
b dF (b) =

ˆ b=w

b=0

ˆ x=b

x=0

dx dF (b)

=

ˆ x=w

x=0

ˆ b=w

b=x

dF (b) dx

=

ˆ w

0

[1− F (x)] dx (18)

Now the expected payoff to the equilibrium strategy Φ against the non-equilibrium strategy

F is given by

π(Φ|F ) = v

ˆ
F (b) dΦ(b)−

ˆ
b dΦ(b)

=

ˆ v

0

F (b) db− v

2
(19)

Conversely, the expected payoff to the non-equilibrium strategy F against itself is given by

π(F |F ) = v

ˆ
F (b) dF (b)−

ˆ
b dF (b)

=
v

2
−
ˆ
b dF (b) since F (X) ∼ U [0, 1] for X ∼ F (x)

=
v

2
−
ˆ w

0

[1− F (b)] db since

ˆ
b dF (b) =

ˆ w

0

[1− F (b)] db

≤ v

2
−
ˆ v

0

[1− F (b)] db

=
v

2
− v +

ˆ v

0

F (b) db

=

ˆ v

0

F (b) db− v

2

= π(Φ|F ) (20)
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Thus the equilibrium strategy Φ does weakly better against the non-equilibrium strategy F

then the non-equilibrium strategy F does against itself.

Theorem 3 indicates that the Nash equilibrium strategy of auction 1 does at least as well

against any non-equilibrium strategy then that non-equilibrium strategy does against itself.

In contrast, Theorem 1 indicates that the Nash equilibrium strategy of auction 2 does worse

against any sufficiently close alternative strategy then that alternative strategy does against

itself. Together, these theorems suggest that the unique Nash equilibrium of auction 1 is

fundamentally more stable than the unique Nash equilibrium of auction 2.

2.3 Adaptive Dynamics

The logit dynamic described by Fudenberg and Levine (1998) describes the evolution of a

strategy distribution over time in a large population of agents. Agents in this population

make asynchronous strategy adjustments where the timing of each agent’s adjustments fol-

lows a homogeneous Poisson process. Unlike the perfectly rational agents described by Nash

equilibrium, these agents do not always select a best responses but they are more likely to

select strategies that yield higher payoffs. When the distribution of bids is given by the

cumulative distribution function F then the likelihood that an adjusting agent will select

the bid b ∈ [0, w] is given by the logit response

` (b|F ) =
expλπ (b|F )ˆ w

0

expλπ (x|F ) dx

(21)

Hence the evolution of the bid distribution over time is governed by the differential equation

Ḟ (b) = L (b|F )− F (b) where L(b|F ) =
´ b

0
`(b|F ). The parameter λ ≥ 0 denotes the agent’s

sensitivity to payoff differences. When λ is large, agents have high precision and are sensitive

to small differences in payoffs, so they are very likely to select strategies that yield high

payoffs. As λ approaches infinity, agents become increasingly precise and the logit response

approaches the best response arg max
b
π(b|F ). When λ is small agents have low precision

and are insensitive to small differences in payoffs, so they exhibit more randomness in their

bidding behavior. When λ = 0, agents are completely insensitive to payoff differences and
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the logit response is uniformly distributed over the strategy space [0, w].

The stationary points of the logit dynamic are the set of logit quantal response equilibria

(McKelvey and Palfrey, 1995). As the precision parameter λ approaches infinity, the logit

quantal response equilibrium approaches a Nash equilibrium. A closed form solution for the

logit quantal response equilibrium of auction 1 is provided by Anderson et al. (1998) and is

given by

L∗ (b) = − 1

λv
log

(
1− 1− exp(−λb)

1− exp(−λw)
(1− exp(−λv))

)
(22)

To the best of our knowledge, no closed form solution is currently available for the logit

quantal response equilibrium of an all-pay auction with two prizes. Accordingly, we provide

the logit quantal response equilibrium for auction 2 in Theorem 4.

Theorem 4. The logit quantal response equilibrium bid distribution for auction 2 is given

by L∗ (b) = 1− 1√
λv

erfi−1

([
1− 1− exp (−λb)

1− exp (−λw)

]
erfi
(√

λv
))

Proof. In auction 2, the expected payoff to a bid b ∈ [0, w] against the continuous mixed

strategy distribution F is given by π(b|F ) = 2vF (b)−vF (b)2−b, so the logit quantal response

equilibrium bid distribution L must satisfy

dL

db
=

exp (λ (2vL(b)− vL(b)2 − b))´ w
0

exp (λ (2vL(y)− vL(y)2 − y)) dy

C dL = exp
(
λ
(
2vL− vL2 − b

))
db

C exp
(
λv
(
L2 − 2L

))
dL = exp (−λb) db

C exp(−λv)

ˆ
exp

(
λv (1− L)2) dL =

ˆ
exp (−λb) db

erfi
(√

λv (1− L)
)

= C1 − C2 exp (−λb)

L (b) = 1− 1√
λv

erfi−1 (C1 − C2 exp (−λb)) (23)

Where erfi denotes the imaginary error function and is given by erfi(x) = 2√
π

´ x
0

exp(x2)dx.

Since bids are restricted to the closed interval [0, w] we know that L(0) = 0 and L(w) = 1.
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Solving these boundary conditions for the constants C1 and C2 obtains

C1 =
erfi
(√

λv
)

exp (−λw)− 1
+ erfi

(√
λv
)

C2 =
erfi
(√

λv
)

exp (−λw)− 1
(24)

Substituting the solutions for C1 and C2 into the logit quantal response equilibrium bid

distribution for auction 2 yields

L (b) = 1− 1√
λv

erfi−1

([
1− 1− exp (−λb)

1− exp (−λw)

]
erfi
(√

λv
))

(25)

Figure 2 illustrates the logit quantal response equilibrium mean bid under a variety of

precision parameters. When agents are completely insensitive to payoff differences then bids

are selected uniformly at random and the mean bid in both auctions is equal to w/2. As the

precision parameter approaches infinity the logit quantal response equilibrium mean bid of

each auction approaches the Nash equilibrium mean bid of each auction, v/2 in auction 1

and 2v/3 in auction 2. Note that the logit quantal response equilibrium mean bid is larger

in auction 2 than in auction 1 for every positive value of the precision parameter. Similarly,

Figure 3 illustrates the logit quantal response equilibrium mean payoff under a variety of

precision parameters. Note that the logit quantal response equilibrium mean payoff is always

larger in auction 2 than in auction 1 for every possible value of the precision parameter.

Hopkins (1999) shows that if a unique mixed strategy Nash equilibrium is positive definite

then the logit quantal response equilibrium is an unstable repeller of the logit dynamic

under sufficiently high precision levels. Theorem 1 states that the unique mixed strategy

Nash equilibrium of auction 2 is positive definite and therefore unstable while Theorem 3

states that the unique mixed strategy Nash equilibrium of auction 1 is globally neutrally

stable. Thus sufficiently precise logit dynamics diverge to a persistent limit cycle in auction

2 but converge to the logit quantal response equilibrium in auction 1. Figure 4 depicts the

projection of this limit cycle onto the two dimensional space with the most profitable bid on
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the horizontal axis and the highest payoff on the vertical axis. Note that the figure depicts

clockwise cycling.

Figure 5 depicts the long-run variation in the distribution of bids under a variety of

precision parameters. Here variation is defined as the time average of the Chebyshev distance

between the distribution of bids Ft in the population at time t and the long-run average bid

distribution F̄ (b) = lim
T→∞

1
T

´ T
0
Ft(b)dt. Formally, the long-run variation can be written as

Var(F ) = lim
T→∞

1

T

ˆ T

0

∥∥F̄ − Ft∥∥ dt, (26)

where ‖G‖ = sup{G(b) : b ∈ [0, w]} denotes the uniform norm of the function G. Hence

the long-run variation is equal to zero if the distribution of bids converges to a stationary

point (auction 1, auction 2 under low λ) and the long-run variation is greater than zero if

the distribution of bids converges to a limit cycle (auction 2 under high λ).

3 Experimental Design and Procedures

3.1 Design

This experiment implemented two all pay auctions, described in Section 2, with two bidders

competing over one-prize (auction 1) and with three bidders competing over two prizes

(auction 2). Subjects were endowed with w = $10 and competed for prizes with value

v = $7. Subject bids were constrained to the interval [0, w]. Each session consisted of four 5

minute periods, during which subjects could adjust their bids as frequently as desired with

the click of the mouse. Whenever a subject clicked, her bid instantaneously changed to the

level corresponding to the horizontal position of her mouse. Using this interface subjects

could select any bid amount in dollars and cents from $0 to $10.

To provide random rematching in continuous time, we employ a mean matching protocol

(e.g. Cason et al., 2014; Oprea et al., 2011). A subject’s instantaneous payoff was given

by the expected value of her payoff from being randomly matched with other bidders in

her session. Consistent with the theoretical framework described in Section 2, this means
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than each subject is competing against the distribution of bids currently employed by others

in their session. This feature of mean matching is important for testing adaptive models

because, without mean matching, collusion can easily occur in continuous-time games with

relatively small group sizes (Friedman and Oprea, 2012; Friedman et al., 2015).

At the end of each session, subjects received the time average of their instantaneous payoff

calculated in addition to a fifteen dollar show-up payment. By the law of large numbers, high

frequency mean-matching provides a superior approximation to truly continuous random

matching than does high frequency random matching. Subjects received continuous feedback

regarding their instantaneous payoff throughout each period.

The experiment utilized a 2×2 experimental design. Two informational treatments were

conducted with both the one prize auction and the two prize auction. Under the social-

information treatment, each subject received real-time information regarding the bids and

payoffs of every participant in her cohort. Under the payoff-information treatment, subjects

observed her current payoff function, so she could directly observe the current payoffs to any

possible bid. In both treatments, bids and payoffs were recorded at a rate of ten times per

second.4

Figure 6 illustrates the experimental interface under the social-information and payoff-

information treatments, respectively. The subject’s current bid and payoff is represented

by a blue line. The horizontal position of the blue line indicates the subject’s current bid

and the height of the blue line indicates the subject’s current payoff. The subject’s current

bid and payoff are also displayed numerically at the bottom of the screen. In the social

information treatment, the current bid and payoff of each other subject is represented by a

red line. In the payoff information treatment, the subject’s instantaneous payoff function is

represented by a green line.

4Because payoffs are calculated ten times per second, one could argue this is actually a finitely repeated
game. However, this approximation of continuous time is common in the literature (see Cason et al., 2014;
Oprea et al., 2011). The continuous-time large population dynamics are arbitrarily well approximated by
discrete-time finite population dynamics (Sandholm, 2010). Finally, it is unlikely people have the cognitive
ability or physical reflexes to make adjustments as rapidly as this game is repeated, making the game
effectively continuous from the subjects’ standpoint.
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Figure 6: (a, top left) User interface under auction 1 with social information. (b, top
right) user Interface under auction 1 with payoff information. (c, bottom left) User
interface under auction 2 with social information. (d, bottom right) User interface
under auction 2 with payoff information.
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3.2 Procedures

Eight experimental sessions were conducted, two for each permutation of {payoff information,

social information} × {auction 1, auction 2}. Each session was run with twenty experimental

subjects. All 160 subjects were recruited from the Texas A&M undergraduate population

using econdollars.tamu.edu, an ORSEE database (Greiner, 2015).

At the end of every session, each subject received the time average of their instantaneous

payoff plus a fifteen dollar show-up payment. Subject earnings in auction 1 averaged $15.31

and $15.64 in the social and payoff information treatments, respectively. In auction 2, the

earnings averaged $15.82 and $15.94 in the social and payoff information treatments, re-

spectively. In equilibrium, average subject earnings would equal $15.00, so subjects received

slightly above equilibrium earnings under both treatments. Sessions took place during Oc-

tober 2016. All sessions lasted less than one hour.

4 Hypotheses

As illustrated by Figure 1, the Nash equilibrium bid distribution of auction 2 first-order

stochastically dominates the Nash equilibrium bid distribution of auction 1, so Nash equilib-

rium predicts that bidders will bid more aggressively in auction 2. Similarly, as illustrated

by Figure 2, the mean bid for the logit quantal response equilibrium of auction 2 is higher

than the mean bid for the logit quantal response equilibrium of auction 1 under any positive

precision level. Accordingly, we have the following hypothesis.

Hypothesis 1. Average bids will be higher in auction 2 than auction 1.

Nash equilibrium predicts an expected payoff of zero under both auction 1 and auction

2. However, as illustrated in Figure 3, logit quantal response equilibrium predicts that the

expected payoff to a bidder in auction 2 will be higher than the expected payoff to a bidder

in auction 1, suggesting the following hypothesis.

Hypothesis 2. Average payoffs will be higher in auction 2 than auction 1.

Theorem 3 indicates that the Nash equilibrium strategy of auction 1 is globally neu-

trally stable, so it does at least as well against any alternative strategy then that alternative
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strategy does against itself. In contrast, Theorem 1 indicates that the the Nash equilibrium

strategy of auction 2 is positive definite, so it does worse against any sufficiently close alter-

native strategy then that alternative strategy does against itself. Together, these theorems

suggest that the Nash equilibrium of auction 2 is less stable than the Nash equilibrium of

auction 1, resulting in the following hypothesis.

Hypothesis 3. The empirical distribution of bids in auction 2 will exhibit greater instability

than the empirical distribution of bids in auction 1.

Figure 4 illustrates the clockwise limit cycles predicted by the logit dynamic in auction 2

when the distribution of bids is projected onto the two-dimensional space with the highest

earning bid on the horizontal axis and the highest payoff on the vertical axis. Together with

the local instability result from Theorem 1, the presence of these limit cycles results in the

following hypothesis.

Hypothesis 4. The empirical distribution of bids in auction 2 will exhibit clockwise cycles

when projected onto the two-dimensional space with the highest earning bid on the horizontal

axis and the highest payoff on the vertical axis.

While the payoff and social information treatments feature different informational for-

mats, one can deduce the payoff maximizing strategy from either display. Alternatively, one

can infer and imitate the leading strategy from either display. Hence the aforementioned

theoretical models yield identical predictions under both informational treatments, so we

have the following hypothesis.

Hypothesis 5. Subjects will exhibit no differences in behavior whether they observe payoff

or social information.

If Hypothesis 5 does not hold, a possible alternative is that providing payoff information

will induces subjects to become optimizers and social information will induce subjects to

become imitators. To the extent that these types of models predict differential behavior

we may observe that differential behavior in the experiment. Alternatively, if subjects are

inherently optimizers (or imitators) providing payoff (or social) information may cause them

to perform more in line with theoretical predictions. However, we caution that because
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Table 1: Summary statistics of bidding adjustments. Standard deviations are provided in
parentheses.

Auction 1 (1 prize, 2 bidders) Auction 2 (2 prizes, 3 bidders)

Overall
Social

Information
Payoff

Information
Social

Information
Payoff

Information

Average Bid
3.688

(1.795)
3.378

(1.820)
3.125

(1.708)
4.086

(1.700)
3.865

(1.793)

Dominated Bid
(bid above 7=1)

0.022
(0.146)

0.014
(0.117)

0.004
(0.064)

0.035
(0.183)

0.026
(0.159)

Minimum Bid
(bid below 0.25=1)

0.018
(0.132)

0.025
(0.157)

0.031
(0.172)

0.008
(0.091)

0.014
(0.116)

Absolute Change
in Adjustment

0.894
(1.083)

0.824
(1.046)

1.033
(1.084)

0.774
(1.005)

0.944
(1.146)

Payoff Change
with Adjustment

0.413
(0.881)

0.173
(0.561)

0.423
(0.750)

0.385
(0.880)

0.556
(1.044)

Observations 237,800 43,961 47,144 63,772 82,923
Sessions 8 2 2 2 2
Periods 32 8 8 8 8
Subjects 160 40 40 40 40
Time (in minutes) 160:00 40:00 40:00 40:00 40:00

there is no theoretical result behind these alternatives, they are speculative. Additionally,

the wide variety of imitative and optimizing dynamics makes it difficult to isolate which type

of dynamics are at work.

5 Results

Table 1 provides summary statistics for all subject bid adjustments over all sessions of the

experiment. In total subjects made 237,8000 separate bid adjustments. That is, an indi-

vidual subject made an average of 1486.25 bid adjustments over four five-minute periods,

roughly one bid adjustment every 0.8 seconds. Bid adjustments were substantive, on average

a subject adjusted their bid by $0.89, roughly 9% of the strategy space. Subjects generally

improved their payoff with each adjustment. On average, each adjustment increased instan-

taneous payoffs by $0.17–0.56. Accordingly, subjects rarely adjusted to a dominated strategy

(i.e., bidding over the value of the prize, 7) nor saw it necessary to avoid competing in the

auction (i.e., bidding approximately 0).

We now turn to examining the theoretical predictions for the experiment. Both the
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Table 2: Nash predictions and corresponding period-level empirical outcomes by auc-
tion. Standard errors are provided in parentheses. Stars indicate empirical difference between
social and payoff information treatments is significant at 10%(*), 5% (**), and 1%(***) levels.
Precision parameters are estimated by maximum likelihood, so the empirically estimated preci-
sion parameter for a given period is the precision parameter that maximizes the likelihood of the
observed bid adjustments in that period under the logit dynamic.

Nash Equilibrium Prediction Empirically Observed Behavior
Auction 1
(1 prize,

2 bidders)

Auction 2
(2 prizes,
3 bidders)

Auction 1
(1 prize,

2 bidders)

Auction 2
(2 prizes,
3 bidders)

Mean Bid Amount 3.500 4.667
3.038

(0.067)
3.800∗∗∗

(0.098)

Mean Payoffs 0 0
0.471

(0.066)
0.879∗∗∗

(0.098)

Deviation from Time-
Averaged Mean

0 0
0.193

(0.007)
0.283∗∗∗

(0.009)

Deviation from Nash
Equilibrium

0 0
0.232

(0.008)
0.389∗∗∗

(0.016)

Cycle-Rotation Index 0 0
0.321

(0.036)
0.480∗∗∗

(0.028)

Precision Parameter ∞ ∞ 1.106
(0.041)

0.972∗∗

(0.046)

Nash equilibrium and Logistic Quantal Response Equilibrium predict a higher mean bid for

auction 2 than auction 1 (Hypothesis 1).

Result 1. Mean bids are higher in auction 2 than auction 1. Payoffs are positive in both

auctions, and higher in auction 2 than 1.

Table 2 provides overall and by-treatment statistics on six key empirical values taken at

the period level5 and Nash Equilibrium predictions for comparison. As predicted by equi-

librium models, the average bid in auction 1 (3.038) is lower than the average bid predicted

in auction 2 (3.800). Both a t-test and a non-parametric Wilcoxon test find this difference

to be statistically significant (p < 0.001). Both values are significantly lower than the Nash

Equilibrium prediction (p < 0.001 for both t-test and Wilcoxon, both comparisons). Fig-

ure 7 provides a kernel density estimate of the bids in auction 1 and auction 2 along with

5For the remainder of the paper our analysis will be conducted at the period level, the unit we see as
most appropriate to test our theoretical predictions.
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Figure 7: Bid Distribution of a 2 bidder, 1-prize all-pay auction (auction 1, left) and
3-bidder two prize all-pay auction (auction 2, right) compared to Nash Equilibrium
predictions

the Nash Equilibrium predictions for each auction. Kolmogorov-Smirnov tests reveal that

the empirical bid distributions are significantly different from each other and both are sig-

nificantly different from their respective Nash Equilibrium bid distribution (p < 0.001, all

comparisons).

Since the total number of prizes awarded in each auction is independent from bids, mean

earnings are inversely related related to mean bids. Recall that the Nash Equilibrium predicts

mean earnings of 0 in both auction 1 and auction 2. This prediction does not characterize

the data well. Mean earnings in auction 1 (0.471) and auction 2 (0.879) are significantly

positive and significantly greater in auction 2 (p < 0.001, parametric and non-parametric

tests). The logit quantal response equilibrium prediction does slightly better; Figure 8

reveals that auction 2 is predicted to have positive earnings, but auction 1 is predicted to

have negative earnings. Neither strategies nor payoffs in either auction match equilibrium

predictions (though some comparative statics between the treatments are correct).

Moving beyond equilibrium predictions, both positive definiteness and global neutral

stability criteria predict that auction 2 will exhibit greater instability than auction 1 (Hy-

pothesis 3).

Result 2. The empirical bid distribution in auction 2 exhibits both greater instability and

greater deviation from Nash equilibrium than auction 1.

Recall that each period provides 3000 discrete observations over time (5 minute periods
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Figure 8: Predicted payoffs conditional on bid for a 2 bidder, 1-prize all-pay auc-
tion (auction 1) and 3-bidder two prize all-pay auction (auction 2) compared to nash
equilibrium prediction.

× 0.1 second intervals). To measure variation in the empirical bid distribution over time,

we first compute Ft, the empirical distribution of bids at at time time t. Next, we compute

F̄ , the time-average distribution of bids over the entire period and we use the time-average

of the Chebyshev distance between Ft and F̄ as our measure of variation in the empirical

distribution of bids. Alternatively, we compute F ∗A, the Nash equilibrium prediction for

auction A and we use the time-average of the Chebyshev distance between Ft and F̄ as our

measure of deviation from equilibrium.

Dev(F̄ , Ft) =
1

T

T∑
t=0

∥∥Ft − F̄∥∥ , where

F̄ (b) =
1

T

T∑
t=0

‖Ft(b)‖

‖G‖ = sup {|G(x)| : x ∈ [0, w]}

The value Dev(F, F ∗A) equivalently provides the deviation from Nash equilibrium in auction

A.

25



Table 2 provides the means and standard errors for the aforementioned instability measure

over all 32 periods in the experiment, separated by treatment. In accordance with Hypothesis

Hypothesis 3, auction 2 exhibits significantly greater instability than auction 1. Consistent

with theoretical predictions from stability criteria, (subsection 2.2) The instability measure

for auction 2 (0.283) is significantly higher than for auction 1 (0.193) (p < 0.001, parametric

and non-parametric tests), indicating that the empirical distribution of bids in auction 2

exhibits greater variation over time, a sign of instability. This result is consistent with

theoretical results regarding the positive definiteness of auction 2 and the global neutral

stability of auction 1.

While deviation from Nash equilibrium is not a measure of instability as the empirical

distribution of bids might stabilize on a non-Nash distribution, it should be noted that both

auctions exhibit significant deviation from Nash equilibrium, so neither auction matches the

Nash predictions exactly. This finding is consistent with Result 1 which showed that the

distribution on bids and corresponding average payoffs were significantly different than the

Nash equilibrium value for both auctions. The deviations from equilibrium are also greater

in auction 2 than 1 (p < 0.001, both parametric and non-parametric tests).

An interesting extension of this analysis is to observe the changes in the instability mea-

sure over time in each auction. Figure 9 displays the instability measure and the deviation

from Nash measure over the four experimental periods in each session. Deviation from Nash

equilibrium measure is relatively constant across both treatments. Consistent with Hypoth-

esis 3, both measures of deviation have higher values for all periods of auction 2 than any

period of auction 1.

Result 3. Both auction 1 and 2 exhibit significant clockwise cycling. Cycling is more pro-

nounced in auction 2.

Adaptive dynamics predict cycling in auction 2 (Hypothesis 4), a prediction equilibrium

models and stability criteria are not equipped to address. To measure cycles in the space

bid distributions, we project this infinite dimensional space onto a more manageable two-

dimensional space. To that end we employ a two-dimensional graph of maximum observed

payoff and highest earning bid (see Figure 4). Replaying the data in real time on this graph
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Figure 9: (a, left) Instability (i.e., deviation from time averaged bid distribution) by
auction and period. (b, right) Deviation from Nash equilibrium prediction by auction
and period.

we observe a great deal of persistent clockwise cycling. Figure 4 provides and example of

such a cycle found between the 16 and 21 seconds of session 4.

To formally measure the strength of this clockwise cyclical behavior we take a Poincare

section from the long-run average point in this space. This Poincare section is illustrated by

the vertical line segment in Figure 10. Next we calculate the number of clockwise rotations

and the number of counterclockwise rotations. Here a rotation occurs when the distribution

crosses the Poincare section in the two-dimensional space. We then calculate the cycle

rotation index described by (Cason et al., 2014)

CRI =
Clockwise Traversals− Counterclockwise Traversals

Clockwise Traversals + Counterclockwise Traversals

If subjects exhibit exclusively clockwise rotations then cycle rotation index will equal 1. Con-

versely, if subjects exhibit exclusively counterclockwise rotations then cycle rotation index

will equal -1. If subjects exhibit an equal number of clockwise and counterclockwise rota-

tions the the cycle rotation index will equal 0. Similarly, if bids exhibit a stable distribution

over time then the cycle rotation index will tend towards zero. If the cycle rotation index

is significantly different from zero then the distribution of bids exhibits significant cyclical

patterns. Adaptive dynamics predict that both auction 1 and auction 2 will exhibit signifi-

cant clockwise cycling. However, in auction 1, these cycles are predicted to disappear in the
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Figure 10: An example cycle on the two-dimensional graph of optimal bid and maximal
payoff. Observed from seconds 16 to 21 of period 2, session 4.

limit as the bid distribution converges.

Table 2 provides the Cycle-Rotation Index for Auction 1 and Auction 2 by period. Both

values are significantly different from 0 indicating pronounced clockwise cycling (parametric

and non-parametric tests, p < 0.001). They are also significantly different from 1, the

theoretical prediction of perfect clockwise cycling (parametric and non-parametric tests,

p < 0.001), suggesting some noise in these cycles. Further, the cycle rotation index is

significantly higher in auction 2, consistent with the theoretically predicted convergence of

auction 1 under adaptive models.

Figure 11 reveals CRI averages over the four periods. For both auctions the CRI measure

is significantly above 0 in all periods, indicating strong clockwise cycling. The CRI in auction

1 decreases in later periods while the CRI in auction 2 remains constant, consistent with the

theoretical prediction of persistent limit cycles in auction 2 under adaptive models.

Result 4. Showing payoff information rather than social information alters the empirically

observed bid distribution in auction 1 but not auction 2. Only the cycle-rotation index is

consistently affected by the presence of payoff information in both auctions.

Similar to Table 2, Table 3 provides average and standard error values for several of our
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Figure 11: (a,left) Cycle-rotation index by auction and period. (b,right) Cycle-rotation
index by auction, informational treatment, and period.

key values by auction type and informational treatment. We will now turn to address and

compare these values now. Because our unit of observation is at the period level, and there

are only two sessions of each period-treatment combination (8 observations total), we focus

only on non-parametric hypothesis tests.6

In auction 1, payoff information is characterized by lower bids, higher payoffs, stronger cy-

cling, and greater deviation from Nash equilibrium than social information. A permutations

test finds each of these differences to be significant at the 5% level. A Kolmogorov-Smirnov

test also finds the underlying bid distributions significantly different (p < 0.001).

Only one these informational treatment differences appear under auction 2. A permu-

tation test does not reject the null hypothesis of equal bids, equal payoffs, or equal devi-

ations from both Nash and the time average at the 10% level. The lone exception is the

Cycle-Rotation index. Similar to auction 1, the Cycle-Rotation Index is higher under pay-

off information. Figure 11 shows the period specific Cycle-Rotation Index by auction and

information treatment. Over all four periods within each auction, the payoff information

treatment has a higher value on the CRI than its social information counterpart.

One final measure calculated is the Quantal Response Equilibrium Precision Parameter

(λ). This measure was calculated by estimating a Logistic Quantal Response Equilibrium

model for each period and treatment. A permutation test finds no difference between social

6Our table does provides standard errors for the inquisitive reader.
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Table 3: Auction 1 and 2 period-level empirical outcomes by information type. Standard
errors are provided in parenthesis. Stars indicate empirical difference between social and payoff
information treatments is significant at 10%(*), 5% (**), and 1%(***) levels for a two-tailed non-
parametric permutations test. Precision parameters are estimated by maximum likelihood, so
the empirically estimated precision parameter for a given period is the precision parameter that
maximizes the likelihood of the observed bid adjustments in that period under the logit dynamic.

Auction 1 (1 prize, 2 bidders) Auction 2 (2 prizes, 3 bidders)
Social

Information
Payoff

Information
Social

Information
Payoff

Information

Mean Bid Amount
3.203

(0.076)
2.874∗∗

(0.073)
3.741

(0.176)
3.858

(0.097)

Mean Payoffs
0.306

(0.076)
0.636∗∗

(0.073)
0.938

(0.176)
0.821

(0.098)

Deviation from Time-
Averaged Mean

0.179
(0.008)

0.207∗∗

(0.008)
0.280

(0.011)
0.286

(0.015)

Deviation from Nash
Equilibrium

0.205
(0.003)

0.259∗∗∗

(0.006)
0.399

(0.024)
0.378

(0.021)

Cycle-Rotation Index
0.244

(0.037)
0.398∗∗

(0.050)
0.415

(0.030)
0.545∗∗

(0.035)

Precision Parameter
1.051

(0.065)
1.161

(0.047)
1.022

(0.058)
0.922

(0.070)

and payoff information treatment values in either auction 1 or 2 at the 10% level, suggesting

that that subjects exhibit similar levels of precision under both informational treatments.

Interestingly the estimated precision parameters differ slightly across auctions, bidders in

auction 2 are estimated to have lower estimated precision than bidders in auction 1. We

suspect that the higher precision of bidders in auction 1 may result from the greater stability

of bid and payoffs in auction 1 relative to auction 2.

Simple regressions of these dependent variables on auction type, information treatment,

their interaction, and a continuous variable for period number confirm these results (see Ap-

pendix Table A.1). Both the auction and information treatment coefficient are significantly

positive in all regressions. The interaction term (auction × payoff information) coefficient

is generally the opposite sign with similar magnitude to the information treatment variable.

This relation suggests that there are differences between information treatments in auction

1, but not auction 2. An exception is the regression of the cycle-rotation index where the

interaction term is essentially zero. The change in the CRI due to the information treatment
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can be interpreted as being the same across auctions.

6 Conclusions

This paper experimentally examines the differences between two all-pay auctions: one with

two bidders and one prize (auction 1), the other with three bidders and two prizes (auction

2). We show that equilibrium models, stability criteria, and adaptive dynamics each predict

large differences in bidding behavior between these two auctions. Nash equilibrium predicts

that bidder in auction 1 will make lower bids. Logit quantal response equilibrium predicts

that bidders in auction 1 will receive lower payoffs. Stability criteria predict greater stability

in auction 1. Adaptive models predict convergence in auction 1 but persistent cyclical

behavior in auction 2. To test these theoretical predictions and experimentally regarding

long-run bidding behavior, we conducted continuous-time, mean-matching experiments with

each of the aforementioned auctions.

Neither auction exhibits complete convergence to equilibrium in our data, but all four of

the aforementioned theoretical predictions hold empirically. Most notably, auction 2 exhib-

ited significantly greater instability, significantly greater deviation from equilibrium, and a

significantly higher cycle-rotation index than auction 1, in line with theoretical predictions

from adaptive models. Further, as predicted by logit quantal response equilibrium, average

bids and payoffs were both significantly lower in auction 1 than auction 2.

The observed bidding behavior also exhibits several significant departures from both

Nash equilibrium and the logit quantal response equilibrium. Average bids in both auction

1 and auction 2 were significantly lower than Nash equilibrium predictions. Consequently,

average payoffs were significantly greater than zero in both auctions, contrasting with the

logit quantal response equilibrium prediction of negative mean payoffs in auction 1. Further,

while stability criteria correctly predict that auction 1 will be more stable than auction 2

(Theorem 1 and Theorem 3), they cannot characterize cyclical bidding dynamics as predicted

by adaptive models.

The second, behaviorally based, treatment had more subtle results. In theory, there

should be no difference between supplying subjects with payoff or social information in this
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game as each information treatment provides subjects with the same information in a differ-

ent format. Further, the best response, logit response, and any imitative response could be

calculated under either informational treatment. However, we observe some key differences

in variables of interest across informational treatments. In auction 1, payoff information

is associated with significantly lower bids, higher payoffs and greater instability. None of

these differences are found to be significant in auction 2. Across both auctions, the cycle

rotation index is significantly higher under payoff information, suggesting that the payoff

information treatment is associated with more robust clockwise cycles. It also suggests that

payoff information brings subjects closer to the predictions from adaptive dynamics which

yield a CRI value of 1. Surprisingly, the logit precision parameter (λ), a measure of payoff

responsiveness, is not significantly different across either type of information treatment.

The intent of using payoff (social) information was to make optimization (imitative) easier

for subjects and induce those dynamics in subject play. It is unclear whether this occurred.7

However, there is suggestive evidence that the differential presentation of information altered

dynamics in some ways. We do note three interesting relations between theory and results

and speculate on their meaning.

First, the stability condition of auction 1, global neutral stability, is different than the

instability condition of auction 2, positive definiteness. Since auction 2 appears more ro-

bust to the information treatment, this may indicate that the latter theoretical property is

stronger. Second, the cycle-rotation index is the one measure sensitive to the information

treatment in both auctions. It is also most related to models of adaptive dynamics. Perhaps

this means the information treatments are effective at altering adaptive dynamics but not

always effective at altering other equilibrium-related measures. Finally, the cycle-rotation

index is closer to 1 in both auctions under the payoff information treatment. This might

point to optimization rather than imitation being representative of the way individuals pro-

cess and respond to information. However, given the similarity in subject performance across

7One approach might be to simulate imitative and optimization models under the conditions of auction
1 and auction 2 to see whether the empirically observed differences occur. This approach is problematic
for several reasons. There are many different imitative and optimization models that we could use. Slight
changes in assumptions and parameters could lead to various empirical differences on our variables of interest.
Second, our initial investigation into these methods led to predictions contrary to our data. For instance,
simulations generally predict greater instability in the distribution of bids under imitative dynamics than
under optimization dynamics, contrary to what is observed across our social and payoff treatments.
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information treatments under a whole host of other measures, it will require future research

to arrive at any definitive conclusion on this matter.

Regardless, our main results concerning stability and cycling help us understand when

we can use Nash equilibrium to reliably predict aggregate behavior in games. If equilibrium

satisfies stability conditions, equilibrium models provide a good estimate of long-run aggre-

gate behavior. However, if equilibrium models fail to satisfy stability conditions, they are

unreliable but adaptive models still provide a reliable characterization long-run behavior.

We invite further research on this topic.
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A Additional Tables and Figures

Table A.1: Linear regressions of key dependent variables on treatments and interac-
tions. All standard errors are heteroskedasticity-robust.

Mean
Bid

Mean
Payoff

Deviation
From

Time-Averaged
Mean

Deviation
From
Nash

Equilibrium

Cycle-
Rotation

Index

Precision
Parameter

λ

auction 2
0.538∗∗∗ 0.631∗∗∗ 0.102∗∗∗ 0.619∗∗∗ 0.193∗∗∗ -0.028
(0.163) (0.164) (0.022) (0.046) (0.025) (0.075)

payoff information
-0.329∗∗∗ 0.330∗∗∗ 0.028∗∗ 1.587∗∗∗ 0.053∗∗∗ 0.110
(0.091) (0.091) (0.010) (0.325) (0.007) (0.067)

auction 2 × 0.446∗∗∗ -0.446∗∗ -0.022 -0.400 -0.074 -0.210∗

payoff information (0.209) (0.210) (0.015) (0.358) (0.033) (0.116)

period
-0.115∗∗ 0.114∗ -0.018∗∗∗ -0.001 -0.046∗∗∗ 0.051
(0.058) (0.058) (0.004) (0.009) (0.016) (0.030)

observations 32 32 32 32 32 32
r-squared 0.706 0.497 0.867 0.778 0.648 0.315
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